Metamath Proof Explorer


Theorem cnpfcf

Description: A function F is continuous at point A iff F respects cluster points there. (Contributed by Jeff Hankins, 14-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion cnpfcf JTopOnXKTopOnYAXFJCnPKAF:XYfFilXAJfClusfFAKfClusffF

Proof

Step Hyp Ref Expression
1 cnpf2 JTopOnXKTopOnYFJCnPKAF:XY
2 1 3expa JTopOnXKTopOnYFJCnPKAF:XY
3 2 3adantl3 JTopOnXKTopOnYAXFJCnPKAF:XY
4 topontop KTopOnYKTop
5 cnpfcfi KTopAJfClusfFJCnPKAFAKfClusffF
6 5 3com23 KTopFJCnPKAAJfClusfFAKfClusffF
7 6 3expia KTopFJCnPKAAJfClusfFAKfClusffF
8 4 7 sylan KTopOnYFJCnPKAAJfClusfFAKfClusffF
9 8 ralrimivw KTopOnYFJCnPKAfFilXAJfClusfFAKfClusffF
10 9 3ad2antl2 JTopOnXKTopOnYAXFJCnPKAfFilXAJfClusfFAKfClusffF
11 3 10 jca JTopOnXKTopOnYAXFJCnPKAF:XYfFilXAJfClusfFAKfClusffF
12 11 ex JTopOnXKTopOnYAXFJCnPKAF:XYfFilXAJfClusfFAKfClusffF
13 simplrl JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghgFilX
14 filfbas gFilXgfBasX
15 13 14 syl JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghgfBasX
16 simprl JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghhFilY
17 simpllr JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghF:XY
18 simprr JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghYFilMapFgh
19 15 16 17 18 fmfnfm JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFf
20 r19.29 fFilXAJfClusfFAKfClusffFfFilXgfh=YFilMapFffFilXAJfClusfFAKfClusffFgfh=YFilMapFf
21 flimfcls JfLimfJfClusf
22 simpll1 JTopOnXKTopOnYAXF:XYgFilXAJfLimgJTopOnX
23 22 ad2antrr JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfJTopOnX
24 simprl JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFffFilX
25 simprrl JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfgf
26 flimss2 JTopOnXfFilXgfJfLimgJfLimf
27 23 24 25 26 syl3anc JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfJfLimgJfLimf
28 simprr JTopOnXKTopOnYAXF:XYgFilXAJfLimgAJfLimg
29 28 ad2antrr JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfAJfLimg
30 27 29 sseldd JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfAJfLimf
31 21 30 sselid JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfAJfClusf
32 simpll2 JTopOnXKTopOnYAXF:XYgFilXAJfLimgKTopOnY
33 32 ad2antrr JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfKTopOnY
34 simplr JTopOnXKTopOnYAXF:XYgFilXAJfLimgF:XY
35 34 ad2antrr JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfF:XY
36 fcfval KTopOnYfFilXF:XYKfClusffF=KfClusYFilMapFf
37 33 24 35 36 syl3anc JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfKfClusffF=KfClusYFilMapFf
38 simprrr JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfh=YFilMapFf
39 38 oveq2d JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfKfClush=KfClusYFilMapFf
40 37 39 eqtr4d JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfKfClusffF=KfClush
41 40 eleq2d JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfFAKfClusffFFAKfClush
42 41 biimpd JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfFAKfClusffFFAKfClush
43 31 42 embantd JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfAJfClusfFAKfClusffFFAKfClush
44 43 expr JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXgfh=YFilMapFfAJfClusfFAKfClusffFFAKfClush
45 44 impcomd JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXAJfClusfFAKfClusffFgfh=YFilMapFfFAKfClush
46 45 rexlimdva JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXAJfClusfFAKfClusffFgfh=YFilMapFfFAKfClush
47 20 46 syl5 JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXAJfClusfFAKfClusffFfFilXgfh=YFilMapFfFAKfClush
48 19 47 mpan2d JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXAJfClusfFAKfClusffFFAKfClush
49 48 expr JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghfFilXAJfClusfFAKfClusffFFAKfClush
50 49 com23 JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYfFilXAJfClusfFAKfClusffFYFilMapFghFAKfClush
51 50 ralrimdva JTopOnXKTopOnYAXF:XYgFilXAJfLimgfFilXAJfClusfFAKfClusffFhFilYYFilMapFghFAKfClush
52 toponmax KTopOnYYK
53 32 52 syl JTopOnXKTopOnYAXF:XYgFilXAJfLimgYK
54 simprl JTopOnXKTopOnYAXF:XYgFilXAJfLimggFilX
55 54 14 syl JTopOnXKTopOnYAXF:XYgFilXAJfLimggfBasX
56 fmfil YKgfBasXF:XYYFilMapFgFilY
57 53 55 34 56 syl3anc JTopOnXKTopOnYAXF:XYgFilXAJfLimgYFilMapFgFilY
58 toponuni KTopOnYY=K
59 32 58 syl JTopOnXKTopOnYAXF:XYgFilXAJfLimgY=K
60 59 fveq2d JTopOnXKTopOnYAXF:XYgFilXAJfLimgFilY=FilK
61 57 60 eleqtrd JTopOnXKTopOnYAXF:XYgFilXAJfLimgYFilMapFgFilK
62 eqid K=K
63 62 flimfnfcls YFilMapFgFilKFAKfLimYFilMapFghFilKYFilMapFghFAKfClush
64 61 63 syl JTopOnXKTopOnYAXF:XYgFilXAJfLimgFAKfLimYFilMapFghFilKYFilMapFghFAKfClush
65 flfval KTopOnYgFilXF:XYKfLimfgF=KfLimYFilMapFg
66 32 54 34 65 syl3anc JTopOnXKTopOnYAXF:XYgFilXAJfLimgKfLimfgF=KfLimYFilMapFg
67 66 eleq2d JTopOnXKTopOnYAXF:XYgFilXAJfLimgFAKfLimfgFFAKfLimYFilMapFg
68 60 raleqdv JTopOnXKTopOnYAXF:XYgFilXAJfLimghFilYYFilMapFghFAKfClushhFilKYFilMapFghFAKfClush
69 64 67 68 3bitr4d JTopOnXKTopOnYAXF:XYgFilXAJfLimgFAKfLimfgFhFilYYFilMapFghFAKfClush
70 51 69 sylibrd JTopOnXKTopOnYAXF:XYgFilXAJfLimgfFilXAJfClusfFAKfClusffFFAKfLimfgF
71 70 expr JTopOnXKTopOnYAXF:XYgFilXAJfLimgfFilXAJfClusfFAKfClusffFFAKfLimfgF
72 71 com23 JTopOnXKTopOnYAXF:XYgFilXfFilXAJfClusfFAKfClusffFAJfLimgFAKfLimfgF
73 72 ralrimdva JTopOnXKTopOnYAXF:XYfFilXAJfClusfFAKfClusffFgFilXAJfLimgFAKfLimfgF
74 73 imdistanda JTopOnXKTopOnYAXF:XYfFilXAJfClusfFAKfClusffFF:XYgFilXAJfLimgFAKfLimfgF
75 cnpflf JTopOnXKTopOnYAXFJCnPKAF:XYgFilXAJfLimgFAKfLimfgF
76 74 75 sylibrd JTopOnXKTopOnYAXF:XYfFilXAJfClusfFAKfClusffFFJCnPKA
77 12 76 impbid JTopOnXKTopOnYAXFJCnPKAF:XYfFilXAJfClusfFAKfClusffF