Metamath Proof Explorer


Theorem cnre2csqlem

Description: Lemma for cnre2csqima . (Contributed by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Hypotheses cnre2csqlem.1 G2=HF
cnre2csqlem.2 FFn2
cnre2csqlem.3 GFnV
cnre2csqlem.4 x2Gx
cnre2csqlem.5 xranFyranFHxy=HxHy
Assertion cnre2csqlem X2Y2D+YG2-1GXDGX+DHFYFX<D

Proof

Step Hyp Ref Expression
1 cnre2csqlem.1 G2=HF
2 cnre2csqlem.2 FFn2
3 cnre2csqlem.3 GFnV
4 cnre2csqlem.4 x2Gx
5 cnre2csqlem.5 xranFyranFHxy=HxHy
6 ssv 2V
7 fnssres GFnV2VG2Fn2
8 3 6 7 mp2an G2Fn2
9 elpreima G2Fn2YG2-1GXDGX+DY2G2YGXDGX+D
10 8 9 mp1i X2Y2D+YG2-1GXDGX+DY2G2YGXDGX+D
11 10 simplbda X2Y2D+YG2-1GXDGX+DG2YGXDGX+D
12 11 ex X2Y2D+YG2-1GXDGX+DG2YGXDGX+D
13 simp2 X2Y2D+Y2
14 fvres Y2G2Y=GY
15 13 14 syl X2Y2D+G2Y=GY
16 15 eleq1d X2Y2D+G2YGXDGX+DGYGXDGX+D
17 simp1 X2Y2D+X2
18 fveq2 x=XGx=GX
19 18 eleq1d x=XGxGX
20 19 4 vtoclga X2GX
21 17 20 syl X2Y2D+GX
22 simp3 X2Y2D+D+
23 22 rpred X2Y2D+D
24 21 23 resubcld X2Y2D+GXD
25 24 rexrd X2Y2D+GXD*
26 21 23 readdcld X2Y2D+GX+D
27 26 rexrd X2Y2D+GX+D*
28 elioo2 GXD*GX+D*GYGXDGX+DGYGXD<GYGY<GX+D
29 25 27 28 syl2anc X2Y2D+GYGXDGX+DGYGXD<GYGY<GX+D
30 29 biimpa X2Y2D+GYGXDGX+DGYGXD<GYGY<GX+D
31 30 simp2d X2Y2D+GYGXDGX+DGXD<GY
32 30 simp3d X2Y2D+GYGXDGX+DGY<GX+D
33 31 32 jca X2Y2D+GYGXDGX+DGXD<GYGY<GX+D
34 33 ex X2Y2D+GYGXDGX+DGXD<GYGY<GX+D
35 16 34 sylbid X2Y2D+G2YGXDGX+DGXD<GYGY<GX+D
36 fveq2 x=YGx=GY
37 36 eleq1d x=YGxGY
38 37 4 vtoclga Y2GY
39 13 38 syl X2Y2D+GY
40 absdiflt GYGXDGYGX<DGXD<GYGY<GX+D
41 40 biimprd GYGXDGXD<GYGY<GX+DGYGX<D
42 39 21 23 41 syl3anc X2Y2D+GXD<GYGY<GX+DGYGX<D
43 12 35 42 3syld X2Y2D+YG2-1GXDGX+DGYGX<D
44 fnfvelrn FFn2Y2FYranF
45 2 13 44 sylancr X2Y2D+FYranF
46 fnfvelrn FFn2X2FXranF
47 2 17 46 sylancr X2Y2D+FXranF
48 fvoveq1 x=FYHxy=HFYy
49 fveq2 x=FYHx=HFY
50 49 oveq1d x=FYHxHy=HFYHy
51 48 50 eqeq12d x=FYHxy=HxHyHFYy=HFYHy
52 oveq2 y=FXFYy=FYFX
53 52 fveq2d y=FXHFYy=HFYFX
54 fveq2 y=FXHy=HFX
55 54 oveq2d y=FXHFYHy=HFYHFX
56 53 55 eqeq12d y=FXHFYy=HFYHyHFYFX=HFYHFX
57 51 56 5 vtocl2ga FYranFFXranFHFYFX=HFYHFX
58 45 47 57 syl2anc X2Y2D+HFYFX=HFYHFX
59 1 fveq1i G2Y=HFY
60 fvco2 FFn2Y2HFY=HFY
61 2 13 60 sylancr X2Y2D+HFY=HFY
62 59 15 61 3eqtr3a X2Y2D+GY=HFY
63 1 fveq1i G2X=HFX
64 fvres X2G2X=GX
65 17 64 syl X2Y2D+G2X=GX
66 fvco2 FFn2X2HFX=HFX
67 2 17 66 sylancr X2Y2D+HFX=HFX
68 63 65 67 3eqtr3a X2Y2D+GX=HFX
69 62 68 oveq12d X2Y2D+GYGX=HFYHFX
70 58 69 eqtr4d X2Y2D+HFYFX=GYGX
71 70 fveq2d X2Y2D+HFYFX=GYGX
72 71 breq1d X2Y2D+HFYFX<DGYGX<D
73 43 72 sylibrd X2Y2D+YG2-1GXDGX+DHFYFX<D