| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  | 
						
							| 2 |  | simpl |  | 
						
							| 3 |  | fveecn |  | 
						
							| 4 | 1 2 3 | syl2an |  | 
						
							| 5 |  | simp2 |  | 
						
							| 6 |  | fveecn |  | 
						
							| 7 | 5 2 6 | syl2an |  | 
						
							| 8 |  | simp3 |  | 
						
							| 9 |  | fveecn |  | 
						
							| 10 | 8 2 9 | syl2an |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 |  | fveecn |  | 
						
							| 13 | 1 11 12 | syl2an |  | 
						
							| 14 |  | fveecn |  | 
						
							| 15 | 5 11 14 | syl2an |  | 
						
							| 16 |  | fveecn |  | 
						
							| 17 | 8 11 16 | syl2an |  | 
						
							| 18 |  | simp1 |  | 
						
							| 19 |  | simp3 |  | 
						
							| 20 |  | mulcl |  | 
						
							| 21 | 18 19 20 | syl2an |  | 
						
							| 22 |  | simp2 |  | 
						
							| 23 |  | simp1 |  | 
						
							| 24 |  | mulcl |  | 
						
							| 25 | 22 23 24 | syl2an |  | 
						
							| 26 | 21 25 | addcld |  | 
						
							| 27 |  | mulcl |  | 
						
							| 28 | 22 19 27 | syl2an |  | 
						
							| 29 | 26 28 | subcld |  | 
						
							| 30 |  | simp2 |  | 
						
							| 31 |  | mulcl |  | 
						
							| 32 | 18 30 31 | syl2an |  | 
						
							| 33 |  | simp3 |  | 
						
							| 34 |  | mulcl |  | 
						
							| 35 | 33 23 34 | syl2an |  | 
						
							| 36 |  | mulcl |  | 
						
							| 37 | 33 30 36 | syl2an |  | 
						
							| 38 | 35 37 | subcld |  | 
						
							| 39 | 29 32 38 | subadd2d |  | 
						
							| 40 |  | eqcom |  | 
						
							| 41 | 39 40 | bitrdi |  | 
						
							| 42 | 35 32 37 | addsubd |  | 
						
							| 43 | 35 32 | addcomd |  | 
						
							| 44 | 43 | oveq1d |  | 
						
							| 45 | 42 44 | eqtr3d |  | 
						
							| 46 | 45 | eqeq2d |  | 
						
							| 47 | 41 46 | bitrd |  | 
						
							| 48 | 26 28 32 | subsub4d |  | 
						
							| 49 | 28 32 | addcld |  | 
						
							| 50 | 21 49 25 | subsub3d |  | 
						
							| 51 | 28 25 32 | subsub3d |  | 
						
							| 52 | 51 | eqcomd |  | 
						
							| 53 | 52 | oveq2d |  | 
						
							| 54 | 25 32 | subcld |  | 
						
							| 55 | 21 28 54 | subsubd |  | 
						
							| 56 | 53 55 | eqtrd |  | 
						
							| 57 | 48 50 56 | 3eqtr2d |  | 
						
							| 58 | 21 28 | subcld |  | 
						
							| 59 | 58 25 32 | addsub12d |  | 
						
							| 60 | 21 28 32 | subsub4d |  | 
						
							| 61 | 60 | oveq2d |  | 
						
							| 62 | 57 59 61 | 3eqtrd |  | 
						
							| 63 | 62 | eqeq1d |  | 
						
							| 64 | 32 35 | addcld |  | 
						
							| 65 |  | subeqrev |  | 
						
							| 66 | 26 28 64 37 65 | syl22anc |  | 
						
							| 67 | 47 63 66 | 3bitr3rd |  | 
						
							| 68 | 21 49 | subcld |  | 
						
							| 69 | 25 68 38 | addrsub |  | 
						
							| 70 | 35 37 25 | sub32d |  | 
						
							| 71 | 35 25 37 | subsub4d |  | 
						
							| 72 | 70 71 | eqtrd |  | 
						
							| 73 | 72 | eqeq2d |  | 
						
							| 74 | 69 73 | bitrd |  | 
						
							| 75 |  | eqcom |  | 
						
							| 76 | 74 75 | bitrdi |  | 
						
							| 77 | 67 76 | bitrd |  | 
						
							| 78 |  | colinearalglem1 |  | 
						
							| 79 |  | 3anrot |  | 
						
							| 80 |  | 3anrot |  | 
						
							| 81 |  | colinearalglem1 |  | 
						
							| 82 | 79 80 81 | syl2anb |  | 
						
							| 83 | 77 78 82 | 3bitr4d |  | 
						
							| 84 | 4 7 10 13 15 17 83 | syl33anc |  | 
						
							| 85 | 84 | 2ralbidva |  |