Metamath Proof Explorer


Theorem cpnres

Description: The restriction of a C^n function is C^n . (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion cpnres S F C n N F S C n S N

Proof

Step Hyp Ref Expression
1 simpr S F C n N F C n N
2 ssid
3 elfvdm F C n N N dom C n
4 3 adantl S F C n N N dom C n
5 fncpn C n Fn 0
6 2 5 ax-mp C n Fn 0
7 fndm C n Fn 0 dom C n = 0
8 6 7 mp1i S F C n N dom C n = 0
9 4 8 eleqtrd S F C n N N 0
10 elcpn N 0 F C n N F 𝑝𝑚 D n F N : dom F cn
11 2 9 10 sylancr S F C n N F C n N F 𝑝𝑚 D n F N : dom F cn
12 1 11 mpbid S F C n N F 𝑝𝑚 D n F N : dom F cn
13 12 simpld S F C n N F 𝑝𝑚
14 pmresg S F 𝑝𝑚 F S 𝑝𝑚 S
15 13 14 syldan S F C n N F S 𝑝𝑚 S
16 simpl S F C n N S
17 12 simprd S F C n N D n F N : dom F cn
18 cncff D n F N : dom F cn D n F N : dom F
19 17 18 syl S F C n N D n F N : dom F
20 19 fdmd S F C n N dom D n F N = dom F
21 dvnres S F 𝑝𝑚 N 0 dom D n F N = dom F S D n F S N = D n F N S
22 16 13 9 20 21 syl31anc S F C n N S D n F S N = D n F N S
23 resres D n F N S dom F = D n F N S dom F
24 rescom D n F N S dom F = D n F N dom F S
25 23 24 eqtr3i D n F N S dom F = D n F N dom F S
26 ffn D n F N : dom F D n F N Fn dom F
27 fnresdm D n F N Fn dom F D n F N dom F = D n F N
28 19 26 27 3syl S F C n N D n F N dom F = D n F N
29 28 reseq1d S F C n N D n F N dom F S = D n F N S
30 25 29 eqtrid S F C n N D n F N S dom F = D n F N S
31 inss2 S dom F dom F
32 rescncf S dom F dom F D n F N : dom F cn D n F N S dom F : S dom F cn
33 31 17 32 mpsyl S F C n N D n F N S dom F : S dom F cn
34 30 33 eqeltrrd S F C n N D n F N S : S dom F cn
35 dmres dom F S = S dom F
36 35 oveq1i dom F S cn = S dom F cn
37 34 36 eleqtrrdi S F C n N D n F N S : dom F S cn
38 22 37 eqeltrd S F C n N S D n F S N : dom F S cn
39 recnprss S S
40 elcpn S N 0 F S C n S N F S 𝑝𝑚 S S D n F S N : dom F S cn
41 39 9 40 syl2an2r S F C n N F S C n S N F S 𝑝𝑚 S S D n F S N : dom F S cn
42 15 38 41 mpbir2and S F C n N F S C n S N