Metamath Proof Explorer


Theorem cpnres

Description: The restriction of a C^n function is C^n . (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion cpnres SFCnNFSCnSN

Proof

Step Hyp Ref Expression
1 simpr SFCnNFCnN
2 ssid
3 elfvdm FCnNNdomCn
4 3 adantl SFCnNNdomCn
5 fncpn CnFn0
6 2 5 ax-mp CnFn0
7 fndm CnFn0domCn=0
8 6 7 mp1i SFCnNdomCn=0
9 4 8 eleqtrd SFCnNN0
10 elcpn N0FCnNF𝑝𝑚DnFN:domFcn
11 2 9 10 sylancr SFCnNFCnNF𝑝𝑚DnFN:domFcn
12 1 11 mpbid SFCnNF𝑝𝑚DnFN:domFcn
13 12 simpld SFCnNF𝑝𝑚
14 pmresg SF𝑝𝑚FS𝑝𝑚S
15 13 14 syldan SFCnNFS𝑝𝑚S
16 simpl SFCnNS
17 12 simprd SFCnNDnFN:domFcn
18 cncff DnFN:domFcnDnFN:domF
19 17 18 syl SFCnNDnFN:domF
20 19 fdmd SFCnNdomDnFN=domF
21 dvnres SF𝑝𝑚N0domDnFN=domFSDnFSN=DnFNS
22 16 13 9 20 21 syl31anc SFCnNSDnFSN=DnFNS
23 resres DnFNSdomF=DnFNSdomF
24 rescom DnFNSdomF=DnFNdomFS
25 23 24 eqtr3i DnFNSdomF=DnFNdomFS
26 ffn DnFN:domFDnFNFndomF
27 fnresdm DnFNFndomFDnFNdomF=DnFN
28 19 26 27 3syl SFCnNDnFNdomF=DnFN
29 28 reseq1d SFCnNDnFNdomFS=DnFNS
30 25 29 eqtrid SFCnNDnFNSdomF=DnFNS
31 inss2 SdomFdomF
32 rescncf SdomFdomFDnFN:domFcnDnFNSdomF:SdomFcn
33 31 17 32 mpsyl SFCnNDnFNSdomF:SdomFcn
34 30 33 eqeltrrd SFCnNDnFNS:SdomFcn
35 dmres domFS=SdomF
36 35 oveq1i domFScn=SdomFcn
37 34 36 eleqtrrdi SFCnNDnFNS:domFScn
38 22 37 eqeltrd SFCnNSDnFSN:domFScn
39 recnprss SS
40 elcpn SN0FSCnSNFS𝑝𝑚SSDnFSN:domFScn
41 39 9 40 syl2an2r SFCnNFSCnSNFS𝑝𝑚SSDnFSN:domFScn
42 15 38 41 mpbir2and SFCnNFSCnSN