Description: A "closed subspace" in a subcomplex pre-Hilbert space is actually closed in the topology induced by the norm, thus justifying the terminology "closed subspace". (Contributed by Mario Carneiro, 13-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | csscld.c | |
|
csscld.j | |
||
Assertion | csscld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csscld.c | |
|
2 | csscld.j | |
|
3 | eqid | |
|
4 | 3 1 | cssi | |
5 | 4 | adantl | |
6 | eqid | |
|
7 | 6 3 | ocvss | |
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | 6 8 9 10 3 | ocvval | |
12 | 7 11 | mp1i | |
13 | riinrab | |
|
14 | 12 13 | eqtr4di | |
15 | cphnlm | |
|
16 | 15 | adantr | |
17 | nlmngp | |
|
18 | ngptps | |
|
19 | 16 17 18 | 3syl | |
20 | 6 2 | istps | |
21 | 19 20 | sylib | |
22 | toponuni | |
|
23 | 21 22 | syl | |
24 | 23 | ineq1d | |
25 | 5 14 24 | 3eqtrd | |
26 | topontop | |
|
27 | 21 26 | syl | |
28 | 7 | sseli | |
29 | fvex | |
|
30 | eqid | |
|
31 | 30 | mptiniseg | |
32 | 29 31 | ax-mp | |
33 | eqid | |
|
34 | simpll | |
|
35 | 21 | adantr | |
36 | 35 | cnmptid | |
37 | simpr | |
|
38 | 35 35 37 | cnmptc | |
39 | 2 33 8 34 35 36 38 | cnmpt1ip | |
40 | 33 | cnfldhaus | |
41 | cphclm | |
|
42 | 9 | clm0 | |
43 | 41 42 | syl | |
44 | 43 | ad2antrr | |
45 | 0cn | |
|
46 | 44 45 | eqeltrrdi | |
47 | unicntop | |
|
48 | 47 | sncld | |
49 | 40 46 48 | sylancr | |
50 | cnclima | |
|
51 | 39 49 50 | syl2anc | |
52 | 32 51 | eqeltrrid | |
53 | 28 52 | sylan2 | |
54 | 53 | ralrimiva | |
55 | eqid | |
|
56 | 55 | riincld | |
57 | 27 54 56 | syl2anc | |
58 | 25 57 | eqeltrd | |