Metamath Proof Explorer


Theorem csscld

Description: A "closed subspace" in a subcomplex pre-Hilbert space is actually closed in the topology induced by the norm, thus justifying the terminology "closed subspace". (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses csscld.c C=ClSubSpW
csscld.j J=TopOpenW
Assertion csscld WCPreHilSCSClsdJ

Proof

Step Hyp Ref Expression
1 csscld.c C=ClSubSpW
2 csscld.j J=TopOpenW
3 eqid ocvW=ocvW
4 3 1 cssi SCS=ocvWocvWS
5 4 adantl WCPreHilSCS=ocvWocvWS
6 eqid BaseW=BaseW
7 6 3 ocvss ocvWSBaseW
8 eqid 𝑖W=𝑖W
9 eqid ScalarW=ScalarW
10 eqid 0ScalarW=0ScalarW
11 6 8 9 10 3 ocvval ocvWSBaseWocvWocvWS=xBaseW|yocvWSx𝑖Wy=0ScalarW
12 7 11 mp1i WCPreHilSCocvWocvWS=xBaseW|yocvWSx𝑖Wy=0ScalarW
13 riinrab BaseWyocvWSxBaseW|x𝑖Wy=0ScalarW=xBaseW|yocvWSx𝑖Wy=0ScalarW
14 12 13 eqtr4di WCPreHilSCocvWocvWS=BaseWyocvWSxBaseW|x𝑖Wy=0ScalarW
15 cphnlm WCPreHilWNrmMod
16 15 adantr WCPreHilSCWNrmMod
17 nlmngp WNrmModWNrmGrp
18 ngptps WNrmGrpWTopSp
19 16 17 18 3syl WCPreHilSCWTopSp
20 6 2 istps WTopSpJTopOnBaseW
21 19 20 sylib WCPreHilSCJTopOnBaseW
22 toponuni JTopOnBaseWBaseW=J
23 21 22 syl WCPreHilSCBaseW=J
24 23 ineq1d WCPreHilSCBaseWyocvWSxBaseW|x𝑖Wy=0ScalarW=JyocvWSxBaseW|x𝑖Wy=0ScalarW
25 5 14 24 3eqtrd WCPreHilSCS=JyocvWSxBaseW|x𝑖Wy=0ScalarW
26 topontop JTopOnBaseWJTop
27 21 26 syl WCPreHilSCJTop
28 7 sseli yocvWSyBaseW
29 fvex 0ScalarWV
30 eqid xBaseWx𝑖Wy=xBaseWx𝑖Wy
31 30 mptiniseg 0ScalarWVxBaseWx𝑖Wy-10ScalarW=xBaseW|x𝑖Wy=0ScalarW
32 29 31 ax-mp xBaseWx𝑖Wy-10ScalarW=xBaseW|x𝑖Wy=0ScalarW
33 eqid TopOpenfld=TopOpenfld
34 simpll WCPreHilSCyBaseWWCPreHil
35 21 adantr WCPreHilSCyBaseWJTopOnBaseW
36 35 cnmptid WCPreHilSCyBaseWxBaseWxJCnJ
37 simpr WCPreHilSCyBaseWyBaseW
38 35 35 37 cnmptc WCPreHilSCyBaseWxBaseWyJCnJ
39 2 33 8 34 35 36 38 cnmpt1ip WCPreHilSCyBaseWxBaseWx𝑖WyJCnTopOpenfld
40 33 cnfldhaus TopOpenfldHaus
41 cphclm WCPreHilWCMod
42 9 clm0 WCMod0=0ScalarW
43 41 42 syl WCPreHil0=0ScalarW
44 43 ad2antrr WCPreHilSCyBaseW0=0ScalarW
45 0cn 0
46 44 45 eqeltrrdi WCPreHilSCyBaseW0ScalarW
47 unicntop =TopOpenfld
48 47 sncld TopOpenfldHaus0ScalarW0ScalarWClsdTopOpenfld
49 40 46 48 sylancr WCPreHilSCyBaseW0ScalarWClsdTopOpenfld
50 cnclima xBaseWx𝑖WyJCnTopOpenfld0ScalarWClsdTopOpenfldxBaseWx𝑖Wy-10ScalarWClsdJ
51 39 49 50 syl2anc WCPreHilSCyBaseWxBaseWx𝑖Wy-10ScalarWClsdJ
52 32 51 eqeltrrid WCPreHilSCyBaseWxBaseW|x𝑖Wy=0ScalarWClsdJ
53 28 52 sylan2 WCPreHilSCyocvWSxBaseW|x𝑖Wy=0ScalarWClsdJ
54 53 ralrimiva WCPreHilSCyocvWSxBaseW|x𝑖Wy=0ScalarWClsdJ
55 eqid J=J
56 55 riincld JTopyocvWSxBaseW|x𝑖Wy=0ScalarWClsdJJyocvWSxBaseW|x𝑖Wy=0ScalarWClsdJ
57 27 54 56 syl2anc WCPreHilSCJyocvWSxBaseW|x𝑖Wy=0ScalarWClsdJ
58 25 57 eqeltrd WCPreHilSCSClsdJ