| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cubic.r |  | 
						
							| 2 |  | cubic.a |  | 
						
							| 3 |  | cubic.z |  | 
						
							| 4 |  | cubic.b |  | 
						
							| 5 |  | cubic.c |  | 
						
							| 6 |  | cubic.d |  | 
						
							| 7 |  | cubic.x |  | 
						
							| 8 |  | cubic.t |  | 
						
							| 9 |  | cubic.g |  | 
						
							| 10 |  | cubic.m |  | 
						
							| 11 |  | cubic.n |  | 
						
							| 12 |  | cubic.0 |  | 
						
							| 13 |  | 2cn |  | 
						
							| 14 |  | 3nn0 |  | 
						
							| 15 |  | expcl |  | 
						
							| 16 | 4 14 15 | sylancl |  | 
						
							| 17 |  | mulcl |  | 
						
							| 18 | 13 16 17 | sylancr |  | 
						
							| 19 |  | 9cn |  | 
						
							| 20 |  | mulcl |  | 
						
							| 21 | 19 2 20 | sylancr |  | 
						
							| 22 | 4 5 | mulcld |  | 
						
							| 23 | 21 22 | mulcld |  | 
						
							| 24 | 18 23 | subcld |  | 
						
							| 25 |  | 2nn0 |  | 
						
							| 26 |  | 7nn |  | 
						
							| 27 | 25 26 | decnncl |  | 
						
							| 28 | 27 | nncni |  | 
						
							| 29 | 2 | sqcld |  | 
						
							| 30 | 29 6 | mulcld |  | 
						
							| 31 |  | mulcl |  | 
						
							| 32 | 28 30 31 | sylancr |  | 
						
							| 33 | 24 32 | addcld |  | 
						
							| 34 | 11 33 | eqeltrd |  | 
						
							| 35 | 34 | sqcld |  | 
						
							| 36 |  | 4cn |  | 
						
							| 37 | 4 | sqcld |  | 
						
							| 38 |  | 3cn |  | 
						
							| 39 | 2 5 | mulcld |  | 
						
							| 40 |  | mulcl |  | 
						
							| 41 | 38 39 40 | sylancr |  | 
						
							| 42 | 37 41 | subcld |  | 
						
							| 43 | 10 42 | eqeltrd |  | 
						
							| 44 |  | expcl |  | 
						
							| 45 | 43 14 44 | sylancl |  | 
						
							| 46 |  | mulcl |  | 
						
							| 47 | 36 45 46 | sylancr |  | 
						
							| 48 | 35 47 | subcld |  | 
						
							| 49 | 9 48 | eqeltrd |  | 
						
							| 50 | 49 | sqrtcld |  | 
						
							| 51 | 34 50 | addcld |  | 
						
							| 52 | 51 | halfcld |  | 
						
							| 53 |  | 3ne0 |  | 
						
							| 54 | 38 53 | reccli |  | 
						
							| 55 |  | cxpcl |  | 
						
							| 56 | 52 54 55 | sylancl |  | 
						
							| 57 | 8 56 | eqeltrd |  | 
						
							| 58 | 8 | oveq1d |  | 
						
							| 59 |  | 3nn |  | 
						
							| 60 |  | cxproot |  | 
						
							| 61 | 52 59 60 | sylancl |  | 
						
							| 62 | 58 61 | eqtrd |  | 
						
							| 63 | 49 | sqsqrtd |  | 
						
							| 64 | 63 9 | eqtrd |  | 
						
							| 65 | 13 | a1i |  | 
						
							| 66 | 36 | a1i |  | 
						
							| 67 |  | 4ne0 |  | 
						
							| 68 | 67 | a1i |  | 
						
							| 69 |  | 3z |  | 
						
							| 70 | 69 | a1i |  | 
						
							| 71 | 43 12 70 | expne0d |  | 
						
							| 72 | 66 45 68 71 | mulne0d |  | 
						
							| 73 | 64 | oveq2d |  | 
						
							| 74 |  | subsq |  | 
						
							| 75 | 34 50 74 | syl2anc |  | 
						
							| 76 | 35 47 | nncand |  | 
						
							| 77 | 73 75 76 | 3eqtr3d |  | 
						
							| 78 | 34 50 | subcld |  | 
						
							| 79 | 78 | mul02d |  | 
						
							| 80 | 72 77 79 | 3netr4d |  | 
						
							| 81 |  | oveq1 |  | 
						
							| 82 | 81 | necon3i |  | 
						
							| 83 | 80 82 | syl |  | 
						
							| 84 |  | 2ne0 |  | 
						
							| 85 | 84 | a1i |  | 
						
							| 86 | 51 65 83 85 | divne0d |  | 
						
							| 87 | 54 | a1i |  | 
						
							| 88 | 52 86 87 | cxpne0d |  | 
						
							| 89 | 8 88 | eqnetrd |  | 
						
							| 90 | 2 3 4 5 6 7 57 62 50 64 10 11 89 | cubic2 |  | 
						
							| 91 | 1 | 1cubr |  | 
						
							| 92 | 91 | anbi1i |  | 
						
							| 93 |  | anass |  | 
						
							| 94 | 92 93 | bitri |  | 
						
							| 95 | 94 | rexbii2 |  | 
						
							| 96 | 90 95 | bitr4di |  |