Metamath Proof Explorer


Theorem cubic

Description: The cubic equation, which gives the roots of an arbitrary (nondegenerate) cubic function. Use rextp to convert the existential quantifier to a triple disjunction. This is Metamath 100 proof #37. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses cubic.r R=1-1+i32-1-i32
cubic.a φA
cubic.z φA0
cubic.b φB
cubic.c φC
cubic.d φD
cubic.x φX
cubic.t φT=N+G213
cubic.g φG=N24M3
cubic.m φM=B23AC
cubic.n φN=2B3-9ABC+27A2D
cubic.0 φM0
Assertion cubic φAX3+BX2+CX+D=0rRX=B+rT+MrT3A

Proof

Step Hyp Ref Expression
1 cubic.r R=1-1+i32-1-i32
2 cubic.a φA
3 cubic.z φA0
4 cubic.b φB
5 cubic.c φC
6 cubic.d φD
7 cubic.x φX
8 cubic.t φT=N+G213
9 cubic.g φG=N24M3
10 cubic.m φM=B23AC
11 cubic.n φN=2B3-9ABC+27A2D
12 cubic.0 φM0
13 2cn 2
14 3nn0 30
15 expcl B30B3
16 4 14 15 sylancl φB3
17 mulcl 2B32B3
18 13 16 17 sylancr φ2B3
19 9cn 9
20 mulcl 9A9A
21 19 2 20 sylancr φ9A
22 4 5 mulcld φBC
23 21 22 mulcld φ9ABC
24 18 23 subcld φ2B39ABC
25 2nn0 20
26 7nn 7
27 25 26 decnncl 27
28 27 nncni 27
29 2 sqcld φA2
30 29 6 mulcld φA2D
31 mulcl 27A2D27A2D
32 28 30 31 sylancr φ27A2D
33 24 32 addcld φ2B3-9ABC+27A2D
34 11 33 eqeltrd φN
35 34 sqcld φN2
36 4cn 4
37 4 sqcld φB2
38 3cn 3
39 2 5 mulcld φAC
40 mulcl 3AC3AC
41 38 39 40 sylancr φ3AC
42 37 41 subcld φB23AC
43 10 42 eqeltrd φM
44 expcl M30M3
45 43 14 44 sylancl φM3
46 mulcl 4M34M3
47 36 45 46 sylancr φ4M3
48 35 47 subcld φN24M3
49 9 48 eqeltrd φG
50 49 sqrtcld φG
51 34 50 addcld φN+G
52 51 halfcld φN+G2
53 3ne0 30
54 38 53 reccli 13
55 cxpcl N+G213N+G213
56 52 54 55 sylancl φN+G213
57 8 56 eqeltrd φT
58 8 oveq1d φT3=N+G2133
59 3nn 3
60 cxproot N+G23N+G2133=N+G2
61 52 59 60 sylancl φN+G2133=N+G2
62 58 61 eqtrd φT3=N+G2
63 49 sqsqrtd φG2=G
64 63 9 eqtrd φG2=N24M3
65 13 a1i φ2
66 36 a1i φ4
67 4ne0 40
68 67 a1i φ40
69 3z 3
70 69 a1i φ3
71 43 12 70 expne0d φM30
72 66 45 68 71 mulne0d φ4M30
73 64 oveq2d φN2G2=N2N24M3
74 subsq NGN2G2=N+GNG
75 34 50 74 syl2anc φN2G2=N+GNG
76 35 47 nncand φN2N24M3=4M3
77 73 75 76 3eqtr3d φN+GNG=4M3
78 34 50 subcld φNG
79 78 mul02d φ0NG=0
80 72 77 79 3netr4d φN+GNG0NG
81 oveq1 N+G=0N+GNG=0NG
82 81 necon3i N+GNG0NGN+G0
83 80 82 syl φN+G0
84 2ne0 20
85 84 a1i φ20
86 51 65 83 85 divne0d φN+G20
87 54 a1i φ13
88 52 86 87 cxpne0d φN+G2130
89 8 88 eqnetrd φT0
90 2 3 4 5 6 7 57 62 50 64 10 11 89 cubic2 φAX3+BX2+CX+D=0rr3=1X=B+rT+MrT3A
91 1 1cubr rRrr3=1
92 91 anbi1i rRX=B+rT+MrT3Arr3=1X=B+rT+MrT3A
93 anass rr3=1X=B+rT+MrT3Arr3=1X=B+rT+MrT3A
94 92 93 bitri rRX=B+rT+MrT3Arr3=1X=B+rT+MrT3A
95 94 rexbii2 rRX=B+rT+MrT3Arr3=1X=B+rT+MrT3A
96 90 95 bitr4di φAX3+BX2+CX+D=0rRX=B+rT+MrT3A