Metamath Proof Explorer


Theorem cubic2

Description: The solution to the general cubic equation, for arbitrary choices G and T of the square and cube roots. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses cubic2.a φA
cubic2.z φA0
cubic2.b φB
cubic2.c φC
cubic2.d φD
cubic2.x φX
cubic2.t φT
cubic2.3 φT3=N+G2
cubic2.g φG
cubic2.2 φG2=N24M3
cubic2.m φM=B23AC
cubic2.n φN=2B3-9ABC+27A2D
cubic2.0 φT0
Assertion cubic2 φAX3+BX2+CX+D=0rr3=1X=B+rT+MrT3A

Proof

Step Hyp Ref Expression
1 cubic2.a φA
2 cubic2.z φA0
3 cubic2.b φB
4 cubic2.c φC
5 cubic2.d φD
6 cubic2.x φX
7 cubic2.t φT
8 cubic2.3 φT3=N+G2
9 cubic2.g φG
10 cubic2.2 φG2=N24M3
11 cubic2.m φM=B23AC
12 cubic2.n φN=2B3-9ABC+27A2D
13 cubic2.0 φT0
14 3nn0 30
15 expcl X30X3
16 6 14 15 sylancl φX3
17 1 16 mulcld φAX3
18 6 sqcld φX2
19 3 18 mulcld φBX2
20 17 19 addcld φAX3+BX2
21 4 6 mulcld φCX
22 21 5 addcld φCX+D
23 20 22 addcld φAX3+BX2+CX+D
24 23 1 2 diveq0ad φAX3+BX2+CX+DA=0AX3+BX2+CX+D=0
25 20 22 1 2 divdird φAX3+BX2+CX+DA=AX3+BX2A+CX+DA
26 17 19 1 2 divdird φAX3+BX2A=AX3A+BX2A
27 16 1 2 divcan3d φAX3A=X3
28 3 18 1 2 div23d φBX2A=BAX2
29 27 28 oveq12d φAX3A+BX2A=X3+BAX2
30 26 29 eqtrd φAX3+BX2A=X3+BAX2
31 21 5 1 2 divdird φCX+DA=CXA+DA
32 4 6 1 2 div23d φCXA=CAX
33 32 oveq1d φCXA+DA=CAX+DA
34 31 33 eqtrd φCX+DA=CAX+DA
35 30 34 oveq12d φAX3+BX2A+CX+DA=X3+BAX2+CAX+DA
36 25 35 eqtrd φAX3+BX2+CX+DA=X3+BAX2+CAX+DA
37 36 eqeq1d φAX3+BX2+CX+DA=0X3+BAX2+CAX+DA=0
38 24 37 bitr3d φAX3+BX2+CX+D=0X3+BAX2+CAX+DA=0
39 3 1 2 divcld φBA
40 4 1 2 divcld φCA
41 5 1 2 divcld φDA
42 7 1 2 divcld φTA
43 14 a1i φ30
44 7 1 2 43 expdivd φTA3=T3A3
45 8 oveq1d φT3A3=N+G2A3
46 2cn 2
47 expcl B30B3
48 3 14 47 sylancl φB3
49 mulcl 2B32B3
50 46 48 49 sylancr φ2B3
51 9cn 9
52 mulcl 9A9A
53 51 1 52 sylancr φ9A
54 3 4 mulcld φBC
55 53 54 mulcld φ9ABC
56 50 55 subcld φ2B39ABC
57 2nn0 20
58 7nn 7
59 57 58 decnncl 27
60 59 nncni 27
61 1 sqcld φA2
62 61 5 mulcld φA2D
63 mulcl 27A2D27A2D
64 60 62 63 sylancr φ27A2D
65 56 64 addcld φ2B3-9ABC+27A2D
66 12 65 eqeltrd φN
67 66 9 addcld φN+G
68 2cnd φ2
69 expcl A30A3
70 1 14 69 sylancl φA3
71 2ne0 20
72 71 a1i φ20
73 3z 3
74 73 a1i φ3
75 1 2 74 expne0d φA30
76 67 68 70 72 75 divdiv32d φN+G2A3=N+GA32
77 66 9 70 75 divdird φN+GA3=NA3+GA3
78 77 oveq1d φN+GA32=NA3+GA32
79 76 78 eqtrd φN+G2A3=NA3+GA32
80 44 45 79 3eqtrd φTA3=NA3+GA32
81 9 70 75 divcld φGA3
82 9 70 75 sqdivd φGA32=G2A32
83 10 oveq1d φG2A32=N24M3A32
84 66 sqcld φN2
85 4cn 4
86 3 sqcld φB2
87 3cn 3
88 1 4 mulcld φAC
89 mulcl 3AC3AC
90 87 88 89 sylancr φ3AC
91 86 90 subcld φB23AC
92 11 91 eqeltrd φM
93 expcl M30M3
94 92 14 93 sylancl φM3
95 mulcl 4M34M3
96 85 94 95 sylancr φ4M3
97 70 sqcld φA32
98 sqne0 A3A320A30
99 70 98 syl φA320A30
100 75 99 mpbird φA320
101 84 96 97 100 divsubdird φN24M3A32=N2A324M3A32
102 66 70 75 sqdivd φNA32=N2A32
103 2z 2
104 103 a1i φ2
105 1 2 104 expne0d φA20
106 92 61 105 43 expdivd φMA23=M3A23
107 46 87 mulcomi 23=32
108 107 oveq2i A23=A32
109 57 a1i φ20
110 1 43 109 expmuld φA23=A23
111 1 109 43 expmuld φA32=A32
112 108 110 111 3eqtr3a φA23=A32
113 112 oveq2d φM3A23=M3A32
114 106 113 eqtrd φMA23=M3A32
115 114 oveq2d φ4MA23=4M3A32
116 85 a1i φ4
117 116 94 97 100 divassd φ4M3A32=4M3A32
118 115 117 eqtr4d φ4MA23=4M3A32
119 102 118 oveq12d φNA324MA23=N2A324M3A32
120 101 119 eqtr4d φN24M3A32=NA324MA23
121 82 83 120 3eqtrd φGA32=NA324MA23
122 86 90 61 105 divsubdird φB23ACA2=B2A23ACA2
123 11 oveq1d φMA2=B23ACA2
124 3 1 2 sqdivd φBA2=B2A2
125 1 sqvald φA2=AA
126 125 oveq2d φACA2=ACAA
127 4 1 1 2 2 divcan5d φACAA=CA
128 126 127 eqtr2d φCA=ACA2
129 128 oveq2d φ3CA=3ACA2
130 87 a1i φ3
131 130 88 61 105 divassd φ3ACA2=3ACA2
132 129 131 eqtr4d φ3CA=3ACA2
133 124 132 oveq12d φBA23CA=B2A23ACA2
134 122 123 133 3eqtr4d φMA2=BA23CA
135 56 64 70 75 divdird φ2B3-9ABC+27A2DA3=2B39ABCA3+27A2DA3
136 12 oveq1d φNA3=2B3-9ABC+27A2DA3
137 3 1 2 43 expdivd φBA3=B3A3
138 137 oveq2d φ2BA3=2B3A3
139 68 48 70 75 divassd φ2B3A3=2B3A3
140 138 139 eqtr4d φ2BA3=2B3A3
141 51 a1i φ9
142 1 54 mulcld φABC
143 141 142 70 75 divassd φ9ABCA3=9ABCA3
144 141 1 54 mulassd φ9ABC=9ABC
145 144 oveq1d φ9ABCA3=9ABCA3
146 54 61 1 105 2 divcan5d φABCAA2=BCA2
147 df-3 3=2+1
148 147 oveq2i A3=A2+1
149 expp1 A20A2+1=A2A
150 1 57 149 sylancl φA2+1=A2A
151 148 150 eqtrid φA3=A2A
152 61 1 mulcomd φA2A=AA2
153 151 152 eqtrd φA3=AA2
154 153 oveq2d φABCA3=ABCAA2
155 3 1 4 1 2 2 divmuldivd φBACA=BCAA
156 125 oveq2d φBCA2=BCAA
157 155 156 eqtr4d φBACA=BCA2
158 146 154 157 3eqtr4rd φBACA=ABCA3
159 158 oveq2d φ9BACA=9ABCA3
160 143 145 159 3eqtr4rd φ9BACA=9ABCA3
161 140 160 oveq12d φ2BA39BACA=2B3A39ABCA3
162 50 55 70 75 divsubdird φ2B39ABCA3=2B3A39ABCA3
163 161 162 eqtr4d φ2BA39BACA=2B39ABCA3
164 151 oveq2d φA2DA3=A2DA2A
165 5 1 61 2 105 divcan5d φA2DA2A=DA
166 164 165 eqtr2d φDA=A2DA3
167 166 oveq2d φ27DA=27A2DA3
168 60 a1i φ27
169 168 62 70 75 divassd φ27A2DA3=27A2DA3
170 167 169 eqtr4d φ27DA=27A2DA3
171 163 170 oveq12d φ2BA3-9BACA+27DA=2B39ABCA3+27A2DA3
172 135 136 171 3eqtr4d φNA3=2BA3-9BACA+27DA
173 7 1 13 2 divne0d φTA0
174 39 40 41 6 42 80 81 121 134 172 173 mcubic φX3+BAX2+CAX+DA=0rr3=1X=BA+rTA+MA2rTA3
175 oveq1 r=0r3=03
176 3nn 3
177 0exp 303=0
178 176 177 ax-mp 03=0
179 175 178 eqtrdi r=0r3=0
180 0ne1 01
181 180 a1i r=001
182 179 181 eqnetrd r=0r31
183 182 necon2i r3=1r0
184 simprl φrr0r
185 7 adantr φrr0T
186 1 adantr φrr0A
187 2 adantr φrr0A0
188 184 185 186 187 divassd φrr0rTA=rTA
189 188 eqcomd φrr0rTA=rTA
190 189 oveq2d φrr0BA+rTA=BA+rTA
191 3 adantr φrr0B
192 184 185 mulcld φrr0rT
193 191 192 186 187 divdird φrr0B+rTA=BA+rTA
194 190 193 eqtr4d φrr0BA+rTA=B+rTA
195 92 adantr φrr0M
196 195 186 187 divcld φrr0MA
197 simprr φrr0r0
198 13 adantr φrr0T0
199 184 185 197 198 mulne0d φrr0rT0
200 196 192 186 199 187 divcan7d φrr0MAArTA=MArT
201 195 186 186 187 187 divdiv1d φrr0MAA=MAA
202 186 sqvald φrr0A2=AA
203 202 oveq2d φrr0MA2=MAA
204 201 203 eqtr4d φrr0MAA=MA2
205 204 188 oveq12d φrr0MAArTA=MA2rTA
206 195 186 192 187 199 divdiv32d φrr0MArT=MrTA
207 200 205 206 3eqtr3d φrr0MA2rTA=MrTA
208 194 207 oveq12d φrr0BA+rTA+MA2rTA=B+rTA+MrTA
209 191 192 addcld φrr0B+rT
210 195 192 199 divcld φrr0MrT
211 209 210 186 187 divdird φrr0B+rT+MrTA=B+rTA+MrTA
212 208 211 eqtr4d φrr0BA+rTA+MA2rTA=B+rT+MrTA
213 212 oveq1d φrr0BA+rTA+MA2rTA3=B+rT+MrTA3
214 209 210 addcld φrr0B+rT+MrT
215 87 a1i φrr03
216 3ne0 30
217 216 a1i φrr030
218 214 186 215 187 217 divdiv1d φrr0B+rT+MrTA3=B+rT+MrTA3
219 mulcom A3A3=3A
220 186 87 219 sylancl φrr0A3=3A
221 220 oveq2d φrr0B+rT+MrTA3=B+rT+MrT3A
222 213 218 221 3eqtrd φrr0BA+rTA+MA2rTA3=B+rT+MrT3A
223 222 negeqd φrr0BA+rTA+MA2rTA3=B+rT+MrT3A
224 223 eqeq2d φrr0X=BA+rTA+MA2rTA3X=B+rT+MrT3A
225 224 anassrs φrr0X=BA+rTA+MA2rTA3X=B+rT+MrT3A
226 183 225 sylan2 φrr3=1X=BA+rTA+MA2rTA3X=B+rT+MrT3A
227 226 pm5.32da φrr3=1X=BA+rTA+MA2rTA3r3=1X=B+rT+MrT3A
228 227 rexbidva φrr3=1X=BA+rTA+MA2rTA3rr3=1X=B+rT+MrT3A
229 38 174 228 3bitrd φAX3+BX2+CX+D=0rr3=1X=B+rT+MrT3A