Metamath Proof Explorer


Theorem cycpmco2lem3

Description: Lemma for cycpmco2 . (Contributed by Thierry Arnoux, 4-Jan-2024)

Ref Expression
Hypotheses cycpmco2.c M=toCycD
cycpmco2.s S=SymGrpD
cycpmco2.d φDV
cycpmco2.w φWdomM
cycpmco2.i φIDranW
cycpmco2.j φJranW
cycpmco2.e E=W-1J+1
cycpmco2.1 U=WspliceEE⟨“I”⟩
Assertion cycpmco2lem3 φU1=W

Proof

Step Hyp Ref Expression
1 cycpmco2.c M=toCycD
2 cycpmco2.s S=SymGrpD
3 cycpmco2.d φDV
4 cycpmco2.w φWdomM
5 cycpmco2.i φIDranW
6 cycpmco2.j φJranW
7 cycpmco2.e E=W-1J+1
8 cycpmco2.1 U=WspliceEE⟨“I”⟩
9 ssrab2 wWordD|w:domw1-1DWordD
10 eqid BaseS=BaseS
11 1 2 10 tocycf DVM:wWordD|w:domw1-1DBaseS
12 3 11 syl φM:wWordD|w:domw1-1DBaseS
13 12 fdmd φdomM=wWordD|w:domw1-1D
14 4 13 eleqtrd φWwWordD|w:domw1-1D
15 9 14 sselid φWWordD
16 lencl WWordDW0
17 15 16 syl φW0
18 17 nn0cnd φW
19 1cnd φ1
20 ovexd φW-1J+1V
21 7 20 eqeltrid φEV
22 5 eldifad φID
23 22 s1cld φ⟨“I”⟩WordD
24 splval WdomMEVEV⟨“I”⟩WordDWspliceEE⟨“I”⟩=WprefixE++⟨“I”⟩++WsubstrEW
25 4 21 21 23 24 syl13anc φWspliceEE⟨“I”⟩=WprefixE++⟨“I”⟩++WsubstrEW
26 8 25 eqtrid φU=WprefixE++⟨“I”⟩++WsubstrEW
27 26 fveq2d φU=WprefixE++⟨“I”⟩++WsubstrEW
28 pfxcl WWordDWprefixEWordD
29 15 28 syl φWprefixEWordD
30 ccatcl WprefixEWordD⟨“I”⟩WordDWprefixE++⟨“I”⟩WordD
31 29 23 30 syl2anc φWprefixE++⟨“I”⟩WordD
32 swrdcl WWordDWsubstrEWWordD
33 15 32 syl φWsubstrEWWordD
34 ccatlen WprefixE++⟨“I”⟩WordDWsubstrEWWordDWprefixE++⟨“I”⟩++WsubstrEW=WprefixE++⟨“I”⟩+WsubstrEW
35 31 33 34 syl2anc φWprefixE++⟨“I”⟩++WsubstrEW=WprefixE++⟨“I”⟩+WsubstrEW
36 ccatws1len WprefixEWordDWprefixE++⟨“I”⟩=WprefixE+1
37 29 36 syl φWprefixE++⟨“I”⟩=WprefixE+1
38 id w=Ww=W
39 dmeq w=Wdomw=domW
40 eqidd w=WD=D
41 38 39 40 f1eq123d w=Ww:domw1-1DW:domW1-1D
42 41 elrab WwWordD|w:domw1-1DWWordDW:domW1-1D
43 14 42 sylib φWWordDW:domW1-1D
44 f1cnv W:domW1-1DW-1:ranW1-1 ontodomW
45 43 44 simpl2im φW-1:ranW1-1 ontodomW
46 f1of W-1:ranW1-1 ontodomWW-1:ranWdomW
47 45 46 syl φW-1:ranWdomW
48 47 6 ffvelcdmd φW-1JdomW
49 wrddm WWordDdomW=0..^W
50 15 49 syl φdomW=0..^W
51 48 50 eleqtrd φW-1J0..^W
52 fzofzp1 W-1J0..^WW-1J+10W
53 51 52 syl φW-1J+10W
54 7 53 eqeltrid φE0W
55 pfxlen WWordDE0WWprefixE=E
56 15 54 55 syl2anc φWprefixE=E
57 56 oveq1d φWprefixE+1=E+1
58 37 57 eqtrd φWprefixE++⟨“I”⟩=E+1
59 nn0fz0 W0W0W
60 17 59 sylib φW0W
61 swrdlen WWordDE0WW0WWsubstrEW=WE
62 15 54 60 61 syl3anc φWsubstrEW=WE
63 58 62 oveq12d φWprefixE++⟨“I”⟩+WsubstrEW=E+1+WE
64 27 35 63 3eqtrd φU=E+1+WE
65 fz0ssnn0 0W0
66 65 54 sselid φE0
67 66 nn0zd φE
68 67 peano2zd φE+1
69 68 zcnd φE+1
70 66 nn0cnd φE
71 69 18 70 addsubassd φE+1+W-E=E+1+WE
72 70 19 18 addassd φE+1+W=E+1+W
73 72 oveq1d φE+1+W-E=E+1+W-E
74 64 71 73 3eqtr2d φU=E+1+W-E
75 19 18 addcld φ1+W
76 70 75 pncan2d φE+1+W-E=1+W
77 19 18 addcomd φ1+W=W+1
78 74 76 77 3eqtrd φU=W+1
79 18 19 78 mvrraddd φU1=W