Metamath Proof Explorer


Theorem dalawlem3

Description: Lemma for dalaw . First piece of dalawlem5 . (Contributed by NM, 4-Oct-2012)

Ref Expression
Hypotheses dalawlem.l ˙=K
dalawlem.j ˙=joinK
dalawlem.m ˙=meetK
dalawlem.a A=AtomsK
Assertion dalawlem3 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙R˙T˙U˙R˙P˙U˙S

Proof

Step Hyp Ref Expression
1 dalawlem.l ˙=K
2 dalawlem.j ˙=joinK
3 dalawlem.m ˙=meetK
4 dalawlem.a A=AtomsK
5 eqid BaseK=BaseK
6 simp11 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAKHL
7 6 hllatd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAKLat
8 simp22 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQA
9 simp32 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUATA
10 5 2 4 hlatjcl KHLQATAQ˙TBaseK
11 6 8 9 10 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙TBaseK
12 simp21 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAPA
13 5 4 atbase PAPBaseK
14 12 13 syl KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAPBaseK
15 5 2 latjcl KLatQ˙TBaseKPBaseKQ˙T˙PBaseK
16 7 11 14 15 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙PBaseK
17 simp31 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUASA
18 5 4 atbase SASBaseK
19 17 18 syl KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUASBaseK
20 5 3 latmcl KLatQ˙T˙PBaseKSBaseKQ˙T˙P˙SBaseK
21 7 16 19 20 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙SBaseK
22 simp23 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUARA
23 5 2 4 hlatjcl KHLQARAQ˙RBaseK
24 6 8 22 23 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙RBaseK
25 simp33 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAUA
26 5 4 atbase UAUBaseK
27 25 26 syl KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAUBaseK
28 5 3 latmcl KLatQ˙RBaseKUBaseKQ˙R˙UBaseK
29 7 24 27 28 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙UBaseK
30 5 2 4 hlatjcl KHLRAPAR˙PBaseK
31 6 22 12 30 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAR˙PBaseK
32 5 2 4 hlatjcl KHLUASAU˙SBaseK
33 6 25 17 32 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAU˙SBaseK
34 5 3 latmcl KLatR˙PBaseKU˙SBaseKR˙P˙U˙SBaseK
35 7 31 33 34 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙U˙SBaseK
36 5 2 latjcl KLatQ˙R˙UBaseKR˙P˙U˙SBaseKQ˙R˙U˙R˙P˙U˙SBaseK
37 7 29 35 36 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙U˙R˙P˙U˙SBaseK
38 5 2 4 hlatjcl KHLTAUAT˙UBaseK
39 6 9 25 38 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAT˙UBaseK
40 5 3 latmcl KLatQ˙RBaseKT˙UBaseKQ˙R˙T˙UBaseK
41 7 24 39 40 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙T˙UBaseK
42 5 2 latjcl KLatQ˙R˙T˙UBaseKR˙P˙U˙SBaseKQ˙R˙T˙U˙R˙P˙U˙SBaseK
43 7 41 35 42 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙T˙U˙R˙P˙U˙SBaseK
44 5 4 atbase QAQBaseK
45 8 44 syl KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQBaseK
46 5 3 latmcl KLatQBaseKUBaseKQ˙UBaseK
47 7 45 27 46 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙UBaseK
48 5 2 4 hlatjcl KHLPASAP˙SBaseK
49 6 12 17 48 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙SBaseK
50 5 3 latmcl KLatP˙SBaseKQBaseKP˙S˙QBaseK
51 7 49 45 50 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙QBaseK
52 5 2 latjcl KLatQ˙UBaseKP˙S˙QBaseKQ˙U˙P˙S˙QBaseK
53 7 47 51 52 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U˙P˙S˙QBaseK
54 5 2 latjcl KLatPBaseKQ˙U˙P˙S˙QBaseKP˙Q˙U˙P˙S˙QBaseK
55 7 14 53 54 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙U˙P˙S˙QBaseK
56 5 4 atbase RARBaseK
57 22 56 syl KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUARBaseK
58 5 2 latjcl KLatRBaseKQ˙R˙UBaseKR˙Q˙R˙UBaseK
59 7 57 29 58 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAR˙Q˙R˙UBaseK
60 5 2 latjcl KLatPBaseKR˙Q˙R˙UBaseKP˙R˙Q˙R˙UBaseK
61 7 14 59 60 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙R˙Q˙R˙UBaseK
62 5 2 latjcl KLatQ˙UBaseKPBaseKQ˙U˙PBaseK
63 7 47 14 62 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U˙PBaseK
64 5 1 2 3 latmlej22 KLatSBaseKQ˙T˙PBaseKQ˙U˙PBaseKQ˙T˙P˙S˙Q˙U˙P˙S
65 7 19 16 63 64 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙U˙P˙S
66 5 2 latjass KLatQ˙UBaseKPBaseKSBaseKQ˙U˙P˙S=Q˙U˙P˙S
67 7 47 14 19 66 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U˙P˙S=Q˙U˙P˙S
68 65 67 breqtrd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙U˙P˙S
69 5 3 latmcl KLatQ˙TBaseKP˙SBaseKQ˙T˙P˙SBaseK
70 7 11 49 69 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙SBaseK
71 5 2 latjcl KLatQ˙T˙P˙SBaseKPBaseKQ˙T˙P˙S˙PBaseK
72 7 70 14 71 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙PBaseK
73 5 2 4 hlatjcl KHLPAQAP˙QBaseK
74 6 12 8 73 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙QBaseK
75 1 2 4 hlatlej2 KHLPASAS˙P˙S
76 6 12 17 75 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAS˙P˙S
77 5 1 3 latmlem2 KLatSBaseKP˙SBaseKQ˙T˙PBaseKS˙P˙SQ˙T˙P˙S˙Q˙T˙P˙P˙S
78 7 19 49 16 77 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAS˙P˙SQ˙T˙P˙S˙Q˙T˙P˙P˙S
79 76 78 mpd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙T˙P˙P˙S
80 1 2 4 hlatlej1 KHLPASAP˙P˙S
81 6 12 17 80 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙P˙S
82 5 1 2 3 4 atmod4i1 KHLPAQ˙TBaseKP˙SBaseKP˙P˙SQ˙T˙P˙S˙P=Q˙T˙P˙P˙S
83 6 12 11 49 81 82 syl131anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙P=Q˙T˙P˙P˙S
84 79 83 breqtrrd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙T˙P˙S˙P
85 5 3 latmcom KLatQ˙TBaseKP˙SBaseKQ˙T˙P˙S=P˙S˙Q˙T
86 7 11 49 85 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S=P˙S˙Q˙T
87 simp12 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙P˙Q
88 86 87 eqbrtrd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙P˙Q
89 1 2 4 hlatlej1 KHLPAQAP˙P˙Q
90 6 12 8 89 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙P˙Q
91 5 1 2 latjle12 KLatQ˙T˙P˙SBaseKPBaseKP˙QBaseKQ˙T˙P˙S˙P˙QP˙P˙QQ˙T˙P˙S˙P˙P˙Q
92 7 70 14 74 91 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙P˙QP˙P˙QQ˙T˙P˙S˙P˙P˙Q
93 88 90 92 mpbi2and KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙P˙P˙Q
94 5 1 7 21 72 74 84 93 lattrd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙P˙Q
95 5 2 latjcl KLatQ˙UBaseKP˙SBaseKQ˙U˙P˙SBaseK
96 7 47 49 95 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U˙P˙SBaseK
97 5 1 3 latlem12 KLatQ˙T˙P˙SBaseKQ˙U˙P˙SBaseKP˙QBaseKQ˙T˙P˙S˙Q˙U˙P˙SQ˙T˙P˙S˙P˙QQ˙T˙P˙S˙Q˙U˙P˙S˙P˙Q
98 7 21 96 74 97 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙U˙P˙SQ˙T˙P˙S˙P˙QQ˙T˙P˙S˙Q˙U˙P˙S˙P˙Q
99 68 94 98 mpbi2and KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙U˙P˙S˙P˙Q
100 5 1 2 3 4 atmod3i1 KHLPAP˙SBaseKQBaseKP˙P˙SP˙P˙S˙Q=P˙S˙P˙Q
101 6 12 49 45 81 100 syl131anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙P˙S˙Q=P˙S˙P˙Q
102 101 oveq2d KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U˙P˙P˙S˙Q=Q˙U˙P˙S˙P˙Q
103 5 2 latj12 KLatQ˙UBaseKPBaseKP˙S˙QBaseKQ˙U˙P˙P˙S˙Q=P˙Q˙U˙P˙S˙Q
104 7 47 14 51 103 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U˙P˙P˙S˙Q=P˙Q˙U˙P˙S˙Q
105 5 1 2 3 latmlej12 KLatQBaseKUBaseKPBaseKQ˙U˙P˙Q
106 7 45 27 14 105 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U˙P˙Q
107 5 1 2 3 4 atmod1i1m KHLUAQBaseKP˙SBaseKP˙QBaseKQ˙U˙P˙QQ˙U˙P˙S˙P˙Q=Q˙U˙P˙S˙P˙Q
108 6 25 45 49 74 106 107 syl231anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U˙P˙S˙P˙Q=Q˙U˙P˙S˙P˙Q
109 102 104 108 3eqtr3rd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U˙P˙S˙P˙Q=P˙Q˙U˙P˙S˙Q
110 99 109 breqtrd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙P˙Q˙U˙P˙S˙Q
111 1 2 4 hlatlej1 KHLQARAQ˙Q˙R
112 6 8 22 111 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙Q˙R
113 1 2 4 hlatlej2 KHLRAUAU˙R˙U
114 6 22 25 113 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAU˙R˙U
115 5 3 latmcl KLatP˙SBaseKQ˙TBaseKP˙S˙Q˙TBaseK
116 7 49 11 115 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙TBaseK
117 5 2 4 hlatjcl KHLRAUAR˙UBaseK
118 6 22 25 117 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAR˙UBaseK
119 1 2 4 hlatlej1 KHLQATAQ˙Q˙T
120 6 8 9 119 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙Q˙T
121 5 1 3 latmlem2 KLatQBaseKQ˙TBaseKP˙SBaseKQ˙Q˙TP˙S˙Q˙P˙S˙Q˙T
122 7 45 11 49 121 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙Q˙TP˙S˙Q˙P˙S˙Q˙T
123 120 122 mpd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙P˙S˙Q˙T
124 simp13 KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙R˙U
125 5 1 7 51 116 118 123 124 lattrd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙R˙U
126 5 1 2 latjle12 KLatUBaseKP˙S˙QBaseKR˙UBaseKU˙R˙UP˙S˙Q˙R˙UU˙P˙S˙Q˙R˙U
127 7 27 51 118 126 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAU˙R˙UP˙S˙Q˙R˙UU˙P˙S˙Q˙R˙U
128 114 125 127 mpbi2and KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAU˙P˙S˙Q˙R˙U
129 5 2 latjcl KLatUBaseKP˙S˙QBaseKU˙P˙S˙QBaseK
130 7 27 51 129 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAU˙P˙S˙QBaseK
131 5 1 3 latmlem12 KLatQBaseKQ˙RBaseKU˙P˙S˙QBaseKR˙UBaseKQ˙Q˙RU˙P˙S˙Q˙R˙UQ˙U˙P˙S˙Q˙Q˙R˙R˙U
132 7 45 24 130 118 131 syl122anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙Q˙RU˙P˙S˙Q˙R˙UQ˙U˙P˙S˙Q˙Q˙R˙R˙U
133 112 128 132 mp2and KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U˙P˙S˙Q˙Q˙R˙R˙U
134 5 1 3 latmle2 KLatP˙SBaseKQBaseKP˙S˙Q˙Q
135 7 49 45 134 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙Q
136 5 1 2 3 4 atmod2i2 KHLUAQBaseKP˙S˙QBaseKP˙S˙Q˙QQ˙U˙P˙S˙Q=Q˙U˙P˙S˙Q
137 6 25 45 51 135 136 syl131anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U˙P˙S˙Q=Q˙U˙P˙S˙Q
138 1 2 4 hlatlej2 KHLQARAR˙Q˙R
139 6 8 22 138 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAR˙Q˙R
140 5 1 2 3 4 atmod3i2 KHLUARBaseKQ˙RBaseKR˙Q˙RR˙Q˙R˙U=Q˙R˙R˙U
141 6 25 57 24 139 140 syl131anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAR˙Q˙R˙U=Q˙R˙R˙U
142 133 137 141 3brtr4d KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U˙P˙S˙Q˙R˙Q˙R˙U
143 5 1 2 latjlej2 KLatQ˙U˙P˙S˙QBaseKR˙Q˙R˙UBaseKPBaseKQ˙U˙P˙S˙Q˙R˙Q˙R˙UP˙Q˙U˙P˙S˙Q˙P˙R˙Q˙R˙U
144 7 53 59 14 143 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U˙P˙S˙Q˙R˙Q˙R˙UP˙Q˙U˙P˙S˙Q˙P˙R˙Q˙R˙U
145 142 144 mpd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙U˙P˙S˙Q˙P˙R˙Q˙R˙U
146 5 1 7 21 55 61 110 145 lattrd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙P˙R˙Q˙R˙U
147 5 2 latj13 KLatPBaseKRBaseKQ˙R˙UBaseKP˙R˙Q˙R˙U=Q˙R˙U˙R˙P
148 7 14 57 29 147 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAP˙R˙Q˙R˙U=Q˙R˙U˙R˙P
149 146 148 breqtrd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙R˙U˙R˙P
150 5 1 2 3 latmlej22 KLatSBaseKQ˙T˙PBaseKUBaseKQ˙T˙P˙S˙U˙S
151 7 19 16 27 150 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙U˙S
152 5 2 latjcl KLatQ˙R˙UBaseKR˙PBaseKQ˙R˙U˙R˙PBaseK
153 7 29 31 152 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙U˙R˙PBaseK
154 5 1 3 latlem12 KLatQ˙T˙P˙SBaseKQ˙R˙U˙R˙PBaseKU˙SBaseKQ˙T˙P˙S˙Q˙R˙U˙R˙PQ˙T˙P˙S˙U˙SQ˙T˙P˙S˙Q˙R˙U˙R˙P˙U˙S
155 7 21 153 33 154 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙R˙U˙R˙PQ˙T˙P˙S˙U˙SQ˙T˙P˙S˙Q˙R˙U˙R˙P˙U˙S
156 149 151 155 mpbi2and KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙R˙U˙R˙P˙U˙S
157 5 1 2 3 latmlej21 KLatUBaseKQ˙RBaseKSBaseKQ˙R˙U˙U˙S
158 7 27 24 19 157 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙U˙U˙S
159 5 1 2 3 4 atmod1i1m KHLUAQ˙RBaseKR˙PBaseKU˙SBaseKQ˙R˙U˙U˙SQ˙R˙U˙R˙P˙U˙S=Q˙R˙U˙R˙P˙U˙S
160 6 25 24 31 33 158 159 syl231anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙U˙R˙P˙U˙S=Q˙R˙U˙R˙P˙U˙S
161 156 160 breqtrrd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙R˙U˙R˙P˙U˙S
162 1 2 4 hlatlej2 KHLTAUAU˙T˙U
163 6 9 25 162 syl3anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAU˙T˙U
164 5 1 3 latmlem2 KLatUBaseKT˙UBaseKQ˙RBaseKU˙T˙UQ˙R˙U˙Q˙R˙T˙U
165 7 27 39 24 164 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAU˙T˙UQ˙R˙U˙Q˙R˙T˙U
166 163 165 mpd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙U˙Q˙R˙T˙U
167 5 1 2 latjlej1 KLatQ˙R˙UBaseKQ˙R˙T˙UBaseKR˙P˙U˙SBaseKQ˙R˙U˙Q˙R˙T˙UQ˙R˙U˙R˙P˙U˙S˙Q˙R˙T˙U˙R˙P˙U˙S
168 7 29 41 35 167 syl13anc KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙U˙Q˙R˙T˙UQ˙R˙U˙R˙P˙U˙S˙Q˙R˙T˙U˙R˙P˙U˙S
169 166 168 mpd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙U˙R˙P˙U˙S˙Q˙R˙T˙U˙R˙P˙U˙S
170 5 1 7 21 37 43 161 169 lattrd KHLP˙S˙Q˙T˙P˙QP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙P˙S˙Q˙R˙T˙U˙R˙P˙U˙S