Description: There are exactly phi ( N ) Dirichlet characters modulo N . Part of Theorem 6.5.1 of Shapiro p. 230. (Contributed by Mario Carneiro, 28-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sumdchr.g | |
|
sumdchr.d | |
||
Assertion | dchrhash | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumdchr.g | |
|
2 | sumdchr.d | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | 3 4 | znfi | |
6 | 1 2 | dchrfi | |
7 | simprr | |
|
8 | 1 3 2 4 7 | dchrf | |
9 | simprl | |
|
10 | 8 9 | ffvelcdmd | |
11 | 5 6 10 | fsumcom | |
12 | eqid | |
|
13 | simpl | |
|
14 | simpr | |
|
15 | 1 2 3 12 4 13 14 | sumdchr2 | |
16 | velsn | |
|
17 | ifbi | |
|
18 | 16 17 | mp1i | |
19 | 15 18 | eqtr4d | |
20 | 19 | sumeq2dv | |
21 | eqid | |
|
22 | simpr | |
|
23 | 1 3 2 21 22 4 | dchrsum | |
24 | velsn | |
|
25 | ifbi | |
|
26 | 24 25 | mp1i | |
27 | 23 26 | eqtr4d | |
28 | 27 | sumeq2dv | |
29 | 11 20 28 | 3eqtr3d | |
30 | nnnn0 | |
|
31 | 3 | zncrng | |
32 | crngring | |
|
33 | 4 12 | ringidcl | |
34 | 30 31 32 33 | 4syl | |
35 | 34 | snssd | |
36 | hashcl | |
|
37 | nn0cn | |
|
38 | 6 36 37 | 3syl | |
39 | 38 | ralrimivw | |
40 | 5 | olcd | |
41 | sumss2 | |
|
42 | 35 39 40 41 | syl21anc | |
43 | 1 | dchrabl | |
44 | ablgrp | |
|
45 | 2 21 | grpidcl | |
46 | 43 44 45 | 3syl | |
47 | 46 | snssd | |
48 | phicl | |
|
49 | 48 | nncnd | |
50 | 49 | ralrimivw | |
51 | 6 | olcd | |
52 | sumss2 | |
|
53 | 47 50 51 52 | syl21anc | |
54 | 29 42 53 | 3eqtr4d | |
55 | eqidd | |
|
56 | 55 | sumsn | |
57 | 34 38 56 | syl2anc | |
58 | eqidd | |
|
59 | 58 | sumsn | |
60 | 46 49 59 | syl2anc | |
61 | 54 57 60 | 3eqtr3d | |