Metamath Proof Explorer


Theorem dchrhash

Description: There are exactly phi ( N ) Dirichlet characters modulo N . Part of Theorem 6.5.1 of Shapiro p. 230. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses sumdchr.g G=DChrN
sumdchr.d D=BaseG
Assertion dchrhash ND=ϕN

Proof

Step Hyp Ref Expression
1 sumdchr.g G=DChrN
2 sumdchr.d D=BaseG
3 eqid /N=/N
4 eqid Base/N=Base/N
5 3 4 znfi NBase/NFin
6 1 2 dchrfi NDFin
7 simprr NaBase/NxDxD
8 1 3 2 4 7 dchrf NaBase/NxDx:Base/N
9 simprl NaBase/NxDaBase/N
10 8 9 ffvelcdmd NaBase/NxDxa
11 5 6 10 fsumcom NaBase/NxDxa=xDaBase/Nxa
12 eqid 1/N=1/N
13 simpl NaBase/NN
14 simpr NaBase/NaBase/N
15 1 2 3 12 4 13 14 sumdchr2 NaBase/NxDxa=ifa=1/ND0
16 velsn a1/Na=1/N
17 ifbi a1/Na=1/Nifa1/ND0=ifa=1/ND0
18 16 17 mp1i NaBase/Nifa1/ND0=ifa=1/ND0
19 15 18 eqtr4d NaBase/NxDxa=ifa1/ND0
20 19 sumeq2dv NaBase/NxDxa=aBase/Nifa1/ND0
21 eqid 0G=0G
22 simpr NxDxD
23 1 3 2 21 22 4 dchrsum NxDaBase/Nxa=ifx=0GϕN0
24 velsn x0Gx=0G
25 ifbi x0Gx=0Gifx0GϕN0=ifx=0GϕN0
26 24 25 mp1i NxDifx0GϕN0=ifx=0GϕN0
27 23 26 eqtr4d NxDaBase/Nxa=ifx0GϕN0
28 27 sumeq2dv NxDaBase/Nxa=xDifx0GϕN0
29 11 20 28 3eqtr3d NaBase/Nifa1/ND0=xDifx0GϕN0
30 nnnn0 NN0
31 3 zncrng N0/NCRing
32 crngring /NCRing/NRing
33 4 12 ringidcl /NRing1/NBase/N
34 30 31 32 33 4syl N1/NBase/N
35 34 snssd N1/NBase/N
36 hashcl DFinD0
37 nn0cn D0D
38 6 36 37 3syl ND
39 38 ralrimivw Na1/ND
40 5 olcd NBase/N0Base/NFin
41 sumss2 1/NBase/Na1/NDBase/N0Base/NFina1/ND=aBase/Nifa1/ND0
42 35 39 40 41 syl21anc Na1/ND=aBase/Nifa1/ND0
43 1 dchrabl NGAbel
44 ablgrp GAbelGGrp
45 2 21 grpidcl GGrp0GD
46 43 44 45 3syl N0GD
47 46 snssd N0GD
48 phicl NϕN
49 48 nncnd NϕN
50 49 ralrimivw Nx0GϕN
51 6 olcd ND0DFin
52 sumss2 0GDx0GϕND0DFinx0GϕN=xDifx0GϕN0
53 47 50 51 52 syl21anc Nx0GϕN=xDifx0GϕN0
54 29 42 53 3eqtr4d Na1/ND=x0GϕN
55 eqidd a=1/ND=D
56 55 sumsn 1/NBase/NDa1/ND=D
57 34 38 56 syl2anc Na1/ND=D
58 eqidd x=0GϕN=ϕN
59 58 sumsn 0GDϕNx0GϕN=ϕN
60 46 49 59 syl2anc Nx0GϕN=ϕN
61 54 57 60 3eqtr3d ND=ϕN