Metamath Proof Explorer


Theorem dchrisum0flb

Description: The divisor sum of a real Dirichlet character, is lower bounded by zero everywhere and one at the squares. Equation 9.4.29 of Shapiro, p. 382. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum2.g G=DChrN
rpvmasum2.d D=BaseG
rpvmasum2.1 1˙=0G
dchrisum0f.f F=bvq|qbXLv
dchrisum0f.x φXD
dchrisum0flb.r φX:BaseZ
dchrisum0flb.a φA
Assertion dchrisum0flb φifA10FA

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum2.g G=DChrN
5 rpvmasum2.d D=BaseG
6 rpvmasum2.1 1˙=0G
7 dchrisum0f.f F=bvq|qbXLv
8 dchrisum0f.x φXD
9 dchrisum0flb.r φX:BaseZ
10 dchrisum0flb.a φA
11 fveq2 y=Ay=A
12 11 eleq1d y=AyA
13 12 ifbid y=Aify10=ifA10
14 fveq2 y=AFy=FA
15 13 14 breq12d y=Aify10FyifA10FA
16 oveq2 k=11k=11
17 16 raleqdv k=1y1kify10Fyy11ify10Fy
18 17 imbi2d k=1φy1kify10Fyφy11ify10Fy
19 oveq2 k=i1k=1i
20 19 raleqdv k=iy1kify10Fyy1iify10Fy
21 20 imbi2d k=iφy1kify10Fyφy1iify10Fy
22 oveq2 k=i+11k=1i+1
23 22 raleqdv k=i+1y1kify10Fyy1i+1ify10Fy
24 23 imbi2d k=i+1φy1kify10Fyφy1i+1ify10Fy
25 oveq2 k=A1k=1A
26 25 raleqdv k=Ay1kify10Fyy1Aify10Fy
27 26 imbi2d k=Aφy1kify10Fyφy1Aify10Fy
28 2prm 2
29 28 a1i φ2
30 0nn0 00
31 30 a1i φ00
32 1 2 3 4 5 6 7 8 9 29 31 dchrisum0flblem1 φif2010F20
33 elfz1eq y11y=1
34 2nn0 20
35 34 numexp0 20=1
36 33 35 eqtr4di y11y=20
37 36 fveq2d y11y=20
38 37 eleq1d y11y20
39 38 ifbid y11ify10=if2010
40 36 fveq2d y11Fy=F20
41 39 40 breq12d y11ify10Fyif2010F20
42 41 biimprcd if2010F20y11ify10Fy
43 42 ralrimiv if2010F20y11ify10Fy
44 32 43 syl φy11ify10Fy
45 simpr φii
46 nnuz =1
47 45 46 eleqtrdi φii1
48 47 adantrr φiy1iify10Fyi1
49 eluzp1p1 i1i+11+1
50 48 49 syl φiy1iify10Fyi+11+1
51 df-2 2=1+1
52 51 fveq2i 2=1+1
53 50 52 eleqtrrdi φiy1iify10Fyi+12
54 exprmfct i+12ppi+1
55 53 54 syl φiy1iify10Fyppi+1
56 3 ad2antrr φiy1iify10Fyppi+1N
57 8 ad2antrr φiy1iify10Fyppi+1XD
58 9 ad2antrr φiy1iify10Fyppi+1X:BaseZ
59 53 adantr φiy1iify10Fyppi+1i+12
60 simprl φiy1iify10Fyppi+1p
61 simprr φiy1iify10Fyppi+1pi+1
62 simplrr φiy1iify10Fyppi+1y1iify10Fy
63 simplrl φiy1iify10Fyppi+1i
64 63 nnzd φiy1iify10Fyppi+1i
65 fzval3 i1i=1..^i+1
66 64 65 syl φiy1iify10Fyppi+11i=1..^i+1
67 66 raleqdv φiy1iify10Fyppi+1y1iify10Fyy1..^i+1ify10Fy
68 62 67 mpbid φiy1iify10Fyppi+1y1..^i+1ify10Fy
69 1 2 56 4 5 6 7 57 58 59 60 61 68 dchrisum0flblem2 φiy1iify10Fyppi+1ifi+110Fi+1
70 55 69 rexlimddv φiy1iify10Fyifi+110Fi+1
71 ovex i+1V
72 fveq2 y=i+1y=i+1
73 72 eleq1d y=i+1yi+1
74 73 ifbid y=i+1ify10=ifi+110
75 fveq2 y=i+1Fy=Fi+1
76 74 75 breq12d y=i+1ify10Fyifi+110Fi+1
77 71 76 ralsn yi+1ify10Fyifi+110Fi+1
78 70 77 sylibr φiy1iify10Fyyi+1ify10Fy
79 78 expr φiy1iify10Fyyi+1ify10Fy
80 79 ancld φiy1iify10Fyy1iify10Fyyi+1ify10Fy
81 fzsuc i11i+1=1ii+1
82 47 81 syl φi1i+1=1ii+1
83 82 raleqdv φiy1i+1ify10Fyy1ii+1ify10Fy
84 ralunb y1ii+1ify10Fyy1iify10Fyyi+1ify10Fy
85 83 84 bitrdi φiy1i+1ify10Fyy1iify10Fyyi+1ify10Fy
86 80 85 sylibrd φiy1iify10Fyy1i+1ify10Fy
87 86 expcom iφy1iify10Fyy1i+1ify10Fy
88 87 a2d iφy1iify10Fyφy1i+1ify10Fy
89 18 21 24 27 44 88 nnind Aφy1Aify10Fy
90 10 89 mpcom φy1Aify10Fy
91 10 46 eleqtrdi φA1
92 eluzfz2 A1A1A
93 91 92 syl φA1A
94 15 90 93 rspcdva φifA10FA