Metamath Proof Explorer


Theorem dchrisum0flblem2

Description: Lemma for dchrisum0flb . Induction over relatively prime factors, with the prime power case handled in dchrisum0flblem1 . (Contributed by Mario Carneiro, 5-May-2016) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum2.g G = DChr N
rpvmasum2.d D = Base G
rpvmasum2.1 1 ˙ = 0 G
dchrisum0f.f F = b v q | q b X L v
dchrisum0f.x φ X D
dchrisum0flb.r φ X : Base Z
dchrisum0flb.1 φ A 2
dchrisum0flb.2 φ P
dchrisum0flb.3 φ P A
dchrisum0flb.4 φ y 1 ..^ A if y 1 0 F y
Assertion dchrisum0flblem2 φ if A 1 0 F A

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum2.g G = DChr N
5 rpvmasum2.d D = Base G
6 rpvmasum2.1 1 ˙ = 0 G
7 dchrisum0f.f F = b v q | q b X L v
8 dchrisum0f.x φ X D
9 dchrisum0flb.r φ X : Base Z
10 dchrisum0flb.1 φ A 2
11 dchrisum0flb.2 φ P
12 dchrisum0flb.3 φ P A
13 dchrisum0flb.4 φ y 1 ..^ A if y 1 0 F y
14 breq1 1 = if A 1 0 1 F P P pCnt A F A P P pCnt A if A 1 0 F P P pCnt A F A P P pCnt A
15 breq1 0 = if A 1 0 0 F P P pCnt A F A P P pCnt A if A 1 0 F P P pCnt A F A P P pCnt A
16 1t1e1 1 1 = 1
17 11 adantr φ A P
18 nnq A A
19 18 adantl φ A A
20 nnne0 A A 0
21 20 adantl φ A A 0
22 2z 2
23 22 a1i φ A 2
24 pcexp P A A 0 2 P pCnt A 2 = 2 P pCnt A
25 17 19 21 23 24 syl121anc φ A P pCnt A 2 = 2 P pCnt A
26 eluz2nn A 2 A
27 10 26 syl φ A
28 27 nncnd φ A
29 28 adantr φ A A
30 29 sqsqrtd φ A A 2 = A
31 30 oveq2d φ A P pCnt A 2 = P pCnt A
32 2cnd φ A 2
33 simpr φ A A
34 17 33 pccld φ A P pCnt A 0
35 34 nn0cnd φ A P pCnt A
36 32 35 mulcomd φ A 2 P pCnt A = P pCnt A 2
37 25 31 36 3eqtr3rd φ A P pCnt A 2 = P pCnt A
38 37 oveq2d φ A P P pCnt A 2 = P P pCnt A
39 prmnn P P
40 17 39 syl φ A P
41 40 nncnd φ A P
42 2nn0 2 0
43 42 a1i φ A 2 0
44 41 43 34 expmuld φ A P P pCnt A 2 = P P pCnt A 2
45 38 44 eqtr3d φ A P P pCnt A = P P pCnt A 2
46 45 fveq2d φ A P P pCnt A = P P pCnt A 2
47 40 34 nnexpcld φ A P P pCnt A
48 47 nnrpd φ A P P pCnt A +
49 48 rprege0d φ A P P pCnt A 0 P P pCnt A
50 sqrtsq P P pCnt A 0 P P pCnt A P P pCnt A 2 = P P pCnt A
51 49 50 syl φ A P P pCnt A 2 = P P pCnt A
52 46 51 eqtrd φ A P P pCnt A = P P pCnt A
53 52 47 eqeltrd φ A P P pCnt A
54 53 iftrued φ A if P P pCnt A 1 0 = 1
55 11 27 pccld φ P pCnt A 0
56 1 2 3 4 5 6 7 8 9 11 55 dchrisum0flblem1 φ if P P pCnt A 1 0 F P P pCnt A
57 56 adantr φ A if P P pCnt A 1 0 F P P pCnt A
58 54 57 eqbrtrrd φ A 1 F P P pCnt A
59 pcdvds P A P P pCnt A A
60 11 27 59 syl2anc φ P P pCnt A A
61 11 39 syl φ P
62 61 55 nnexpcld φ P P pCnt A
63 nndivdvds A P P pCnt A P P pCnt A A A P P pCnt A
64 27 62 63 syl2anc φ P P pCnt A A A P P pCnt A
65 60 64 mpbid φ A P P pCnt A
66 65 nnzd φ A P P pCnt A
67 66 adantr φ A A P P pCnt A
68 27 adantr φ A A
69 68 nnrpd φ A A +
70 69 rprege0d φ A A 0 A
71 62 adantr φ A P P pCnt A
72 71 nnrpd φ A P P pCnt A +
73 sqrtdiv A 0 A P P pCnt A + A P P pCnt A = A P P pCnt A
74 70 72 73 syl2anc φ A A P P pCnt A = A P P pCnt A
75 nnz A A
76 znq A P P pCnt A A P P pCnt A
77 75 53 76 syl2an2 φ A A P P pCnt A
78 74 77 eqeltrd φ A A P P pCnt A
79 zsqrtelqelz A P P pCnt A A P P pCnt A A P P pCnt A
80 67 78 79 syl2anc φ A A P P pCnt A
81 65 adantr φ A A P P pCnt A
82 81 nnrpd φ A A P P pCnt A +
83 82 sqrtgt0d φ A 0 < A P P pCnt A
84 elnnz A P P pCnt A A P P pCnt A 0 < A P P pCnt A
85 80 83 84 sylanbrc φ A A P P pCnt A
86 85 iftrued φ A if A P P pCnt A 1 0 = 1
87 fveq2 y = A P P pCnt A y = A P P pCnt A
88 87 eleq1d y = A P P pCnt A y A P P pCnt A
89 88 ifbid y = A P P pCnt A if y 1 0 = if A P P pCnt A 1 0
90 fveq2 y = A P P pCnt A F y = F A P P pCnt A
91 89 90 breq12d y = A P P pCnt A if y 1 0 F y if A P P pCnt A 1 0 F A P P pCnt A
92 nnuz = 1
93 65 92 eleqtrdi φ A P P pCnt A 1
94 27 nnzd φ A
95 61 nnred φ P
96 pcelnn P A P pCnt A P A
97 11 27 96 syl2anc φ P pCnt A P A
98 12 97 mpbird φ P pCnt A
99 prmuz2 P P 2
100 eluz2gt1 P 2 1 < P
101 11 99 100 3syl φ 1 < P
102 expgt1 P P pCnt A 1 < P 1 < P P pCnt A
103 95 98 101 102 syl3anc φ 1 < P P pCnt A
104 1red φ 1
105 0lt1 0 < 1
106 105 a1i φ 0 < 1
107 62 nnred φ P P pCnt A
108 62 nngt0d φ 0 < P P pCnt A
109 27 nnred φ A
110 27 nngt0d φ 0 < A
111 ltdiv2 1 0 < 1 P P pCnt A 0 < P P pCnt A A 0 < A 1 < P P pCnt A A P P pCnt A < A 1
112 104 106 107 108 109 110 111 syl222anc φ 1 < P P pCnt A A P P pCnt A < A 1
113 103 112 mpbid φ A P P pCnt A < A 1
114 28 div1d φ A 1 = A
115 113 114 breqtrd φ A P P pCnt A < A
116 elfzo2 A P P pCnt A 1 ..^ A A P P pCnt A 1 A A P P pCnt A < A
117 93 94 115 116 syl3anbrc φ A P P pCnt A 1 ..^ A
118 91 13 117 rspcdva φ if A P P pCnt A 1 0 F A P P pCnt A
119 118 adantr φ A if A P P pCnt A 1 0 F A P P pCnt A
120 86 119 eqbrtrrd φ A 1 F A P P pCnt A
121 1re 1
122 0le1 0 1
123 121 122 pm3.2i 1 0 1
124 123 a1i φ A 1 0 1
125 1 2 3 4 5 6 7 8 9 dchrisum0ff φ F :
126 125 62 ffvelrnd φ F P P pCnt A
127 126 adantr φ A F P P pCnt A
128 125 65 ffvelrnd φ F A P P pCnt A
129 128 adantr φ A F A P P pCnt A
130 lemul12a 1 0 1 F P P pCnt A 1 0 1 F A P P pCnt A 1 F P P pCnt A 1 F A P P pCnt A 1 1 F P P pCnt A F A P P pCnt A
131 124 127 124 129 130 syl22anc φ A 1 F P P pCnt A 1 F A P P pCnt A 1 1 F P P pCnt A F A P P pCnt A
132 58 120 131 mp2and φ A 1 1 F P P pCnt A F A P P pCnt A
133 16 132 eqbrtrrid φ A 1 F P P pCnt A F A P P pCnt A
134 0red φ 0
135 0re 0
136 121 135 ifcli if P P pCnt A 1 0
137 136 a1i φ if P P pCnt A 1 0
138 breq2 1 = if P P pCnt A 1 0 0 1 0 if P P pCnt A 1 0
139 breq2 0 = if P P pCnt A 1 0 0 0 0 if P P pCnt A 1 0
140 0le0 0 0
141 138 139 122 140 keephyp 0 if P P pCnt A 1 0
142 141 a1i φ 0 if P P pCnt A 1 0
143 134 137 126 142 56 letrd φ 0 F P P pCnt A
144 121 135 ifcli if A P P pCnt A 1 0
145 144 a1i φ if A P P pCnt A 1 0
146 breq2 1 = if A P P pCnt A 1 0 0 1 0 if A P P pCnt A 1 0
147 breq2 0 = if A P P pCnt A 1 0 0 0 0 if A P P pCnt A 1 0
148 146 147 122 140 keephyp 0 if A P P pCnt A 1 0
149 148 a1i φ 0 if A P P pCnt A 1 0
150 134 145 128 149 118 letrd φ 0 F A P P pCnt A
151 126 128 143 150 mulge0d φ 0 F P P pCnt A F A P P pCnt A
152 151 adantr φ ¬ A 0 F P P pCnt A F A P P pCnt A
153 14 15 133 152 ifbothda φ if A 1 0 F P P pCnt A F A P P pCnt A
154 62 nncnd φ P P pCnt A
155 62 nnne0d φ P P pCnt A 0
156 28 154 155 divcan2d φ P P pCnt A A P P pCnt A = A
157 156 fveq2d φ F P P pCnt A A P P pCnt A = F A
158 pcndvds2 P A ¬ P A P P pCnt A
159 11 27 158 syl2anc φ ¬ P A P P pCnt A
160 coprm P A P P pCnt A ¬ P A P P pCnt A P gcd A P P pCnt A = 1
161 11 66 160 syl2anc φ ¬ P A P P pCnt A P gcd A P P pCnt A = 1
162 159 161 mpbid φ P gcd A P P pCnt A = 1
163 prmz P P
164 11 163 syl φ P
165 rpexp1i P A P P pCnt A P pCnt A 0 P gcd A P P pCnt A = 1 P P pCnt A gcd A P P pCnt A = 1
166 164 66 55 165 syl3anc φ P gcd A P P pCnt A = 1 P P pCnt A gcd A P P pCnt A = 1
167 162 166 mpd φ P P pCnt A gcd A P P pCnt A = 1
168 1 2 3 4 5 6 7 8 62 65 167 dchrisum0fmul φ F P P pCnt A A P P pCnt A = F P P pCnt A F A P P pCnt A
169 157 168 eqtr3d φ F A = F P P pCnt A F A P P pCnt A
170 153 169 breqtrrd φ if A 1 0 F A