| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpvmasum.z | ⊢ 𝑍  =  ( ℤ/nℤ ‘ 𝑁 ) | 
						
							| 2 |  | rpvmasum.l | ⊢ 𝐿  =  ( ℤRHom ‘ 𝑍 ) | 
						
							| 3 |  | rpvmasum.a | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 4 |  | rpvmasum2.g | ⊢ 𝐺  =  ( DChr ‘ 𝑁 ) | 
						
							| 5 |  | rpvmasum2.d | ⊢ 𝐷  =  ( Base ‘ 𝐺 ) | 
						
							| 6 |  | rpvmasum2.1 | ⊢  1   =  ( 0g ‘ 𝐺 ) | 
						
							| 7 |  | dchrisum0f.f | ⊢ 𝐹  =  ( 𝑏  ∈  ℕ  ↦  Σ 𝑣  ∈  { 𝑞  ∈  ℕ  ∣  𝑞  ∥  𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑣 ) ) ) | 
						
							| 8 |  | dchrisum0f.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐷 ) | 
						
							| 9 |  | dchrisum0flb.r | ⊢ ( 𝜑  →  𝑋 : ( Base ‘ 𝑍 ) ⟶ ℝ ) | 
						
							| 10 |  | dchrisum0flb.1 | ⊢ ( 𝜑  →  𝐴  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 11 |  | dchrisum0flb.2 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 12 |  | dchrisum0flb.3 | ⊢ ( 𝜑  →  𝑃  ∥  𝐴 ) | 
						
							| 13 |  | dchrisum0flb.4 | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( 1 ..^ 𝐴 ) if ( ( √ ‘ 𝑦 )  ∈  ℕ ,  1 ,  0 )  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 14 |  | breq1 | ⊢ ( 1  =  if ( ( √ ‘ 𝐴 )  ∈  ℕ ,  1 ,  0 )  →  ( 1  ≤  ( ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ·  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) )  ↔  if ( ( √ ‘ 𝐴 )  ∈  ℕ ,  1 ,  0 )  ≤  ( ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ·  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) ) ) | 
						
							| 15 |  | breq1 | ⊢ ( 0  =  if ( ( √ ‘ 𝐴 )  ∈  ℕ ,  1 ,  0 )  →  ( 0  ≤  ( ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ·  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) )  ↔  if ( ( √ ‘ 𝐴 )  ∈  ℕ ,  1 ,  0 )  ≤  ( ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ·  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) ) ) | 
						
							| 16 |  | 1t1e1 | ⊢ ( 1  ·  1 )  =  1 | 
						
							| 17 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  𝑃  ∈  ℙ ) | 
						
							| 18 |  | nnq | ⊢ ( ( √ ‘ 𝐴 )  ∈  ℕ  →  ( √ ‘ 𝐴 )  ∈  ℚ ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( √ ‘ 𝐴 )  ∈  ℚ ) | 
						
							| 20 |  | nnne0 | ⊢ ( ( √ ‘ 𝐴 )  ∈  ℕ  →  ( √ ‘ 𝐴 )  ≠  0 ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( √ ‘ 𝐴 )  ≠  0 ) | 
						
							| 22 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 23 | 22 | a1i | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  2  ∈  ℤ ) | 
						
							| 24 |  | pcexp | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ( √ ‘ 𝐴 )  ∈  ℚ  ∧  ( √ ‘ 𝐴 )  ≠  0 )  ∧  2  ∈  ℤ )  →  ( 𝑃  pCnt  ( ( √ ‘ 𝐴 ) ↑ 2 ) )  =  ( 2  ·  ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) ) ) | 
						
							| 25 | 17 19 21 23 24 | syl121anc | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑃  pCnt  ( ( √ ‘ 𝐴 ) ↑ 2 ) )  =  ( 2  ·  ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) ) ) | 
						
							| 26 |  | eluz2nn | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ℕ ) | 
						
							| 27 | 10 26 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ℕ ) | 
						
							| 28 | 27 | nncnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 30 | 29 | sqsqrtd | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( ( √ ‘ 𝐴 ) ↑ 2 )  =  𝐴 ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑃  pCnt  ( ( √ ‘ 𝐴 ) ↑ 2 ) )  =  ( 𝑃  pCnt  𝐴 ) ) | 
						
							| 32 |  | 2cnd | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  2  ∈  ℂ ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( √ ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 34 | 17 33 | pccld | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑃  pCnt  ( √ ‘ 𝐴 ) )  ∈  ℕ0 ) | 
						
							| 35 | 34 | nn0cnd | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑃  pCnt  ( √ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 36 | 32 35 | mulcomd | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 2  ·  ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) )  =  ( ( 𝑃  pCnt  ( √ ‘ 𝐴 ) )  ·  2 ) ) | 
						
							| 37 | 25 31 36 | 3eqtr3rd | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( ( 𝑃  pCnt  ( √ ‘ 𝐴 ) )  ·  2 )  =  ( 𝑃  pCnt  𝐴 ) ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑃 ↑ ( ( 𝑃  pCnt  ( √ ‘ 𝐴 ) )  ·  2 ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 39 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 40 | 17 39 | syl | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  𝑃  ∈  ℕ ) | 
						
							| 41 | 40 | nncnd | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  𝑃  ∈  ℂ ) | 
						
							| 42 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 43 | 42 | a1i | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  2  ∈  ℕ0 ) | 
						
							| 44 | 41 43 34 | expmuld | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑃 ↑ ( ( 𝑃  pCnt  ( √ ‘ 𝐴 ) )  ·  2 ) )  =  ( ( 𝑃 ↑ ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) ) ↑ 2 ) ) | 
						
							| 45 | 38 44 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  =  ( ( 𝑃 ↑ ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) ) ↑ 2 ) ) | 
						
							| 46 | 45 | fveq2d | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  =  ( √ ‘ ( ( 𝑃 ↑ ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) ) ↑ 2 ) ) ) | 
						
							| 47 | 40 34 | nnexpcld | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) )  ∈  ℕ ) | 
						
							| 48 | 47 | nnrpd | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) )  ∈  ℝ+ ) | 
						
							| 49 | 48 | rprege0d | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) )  ∈  ℝ  ∧  0  ≤  ( 𝑃 ↑ ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) ) ) ) | 
						
							| 50 |  | sqrtsq | ⊢ ( ( ( 𝑃 ↑ ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) )  ∈  ℝ  ∧  0  ≤  ( 𝑃 ↑ ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) ) )  →  ( √ ‘ ( ( 𝑃 ↑ ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) ) ↑ 2 ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) ) ) | 
						
							| 51 | 49 50 | syl | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( √ ‘ ( ( 𝑃 ↑ ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) ) ↑ 2 ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) ) ) | 
						
							| 52 | 46 51 | eqtrd | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( √ ‘ 𝐴 ) ) ) ) | 
						
							| 53 | 52 47 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ) | 
						
							| 54 | 53 | iftrued | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  if ( ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ,  1 ,  0 )  =  1 ) | 
						
							| 55 | 11 27 | pccld | ⊢ ( 𝜑  →  ( 𝑃  pCnt  𝐴 )  ∈  ℕ0 ) | 
						
							| 56 | 1 2 3 4 5 6 7 8 9 11 55 | dchrisum0flblem1 | ⊢ ( 𝜑  →  if ( ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ,  1 ,  0 )  ≤  ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  if ( ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ,  1 ,  0 )  ≤  ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 58 | 54 57 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  1  ≤  ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 59 |  | pcdvds | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  𝐴 ) | 
						
							| 60 | 11 27 59 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  𝐴 ) | 
						
							| 61 | 11 39 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 62 | 61 55 | nnexpcld | ⊢ ( 𝜑  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℕ ) | 
						
							| 63 |  | nndivdvds | ⊢ ( ( 𝐴  ∈  ℕ  ∧  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℕ )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  𝐴  ↔  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ) ) | 
						
							| 64 | 27 62 63 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∥  𝐴  ↔  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ) ) | 
						
							| 65 | 60 64 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ) | 
						
							| 66 | 65 | nnzd | ⊢ ( 𝜑  →  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℤ ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℤ ) | 
						
							| 68 | 27 | adantr | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  𝐴  ∈  ℕ ) | 
						
							| 69 | 68 | nnrpd | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  𝐴  ∈  ℝ+ ) | 
						
							| 70 | 69 | rprege0d | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) ) | 
						
							| 71 | 62 | adantr | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℕ ) | 
						
							| 72 | 71 | nnrpd | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℝ+ ) | 
						
							| 73 |  | sqrtdiv | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℝ+ )  →  ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  =  ( ( √ ‘ 𝐴 )  /  ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) | 
						
							| 74 | 70 72 73 | syl2anc | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  =  ( ( √ ‘ 𝐴 )  /  ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) | 
						
							| 75 |  | nnz | ⊢ ( ( √ ‘ 𝐴 )  ∈  ℕ  →  ( √ ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 76 |  | znq | ⊢ ( ( ( √ ‘ 𝐴 )  ∈  ℤ  ∧  ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ )  →  ( ( √ ‘ 𝐴 )  /  ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℚ ) | 
						
							| 77 | 75 53 76 | syl2an2 | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( ( √ ‘ 𝐴 )  /  ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℚ ) | 
						
							| 78 | 74 77 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℚ ) | 
						
							| 79 |  | zsqrtelqelz | ⊢ ( ( ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℤ  ∧  ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℚ )  →  ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℤ ) | 
						
							| 80 | 67 78 79 | syl2anc | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℤ ) | 
						
							| 81 | 65 | adantr | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ) | 
						
							| 82 | 81 | nnrpd | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℝ+ ) | 
						
							| 83 | 82 | sqrtgt0d | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  0  <  ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) | 
						
							| 84 |  | elnnz | ⊢ ( ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ  ↔  ( ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℤ  ∧  0  <  ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) ) | 
						
							| 85 | 80 83 84 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ ) | 
						
							| 86 | 85 | iftrued | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  if ( ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ ,  1 ,  0 )  =  1 ) | 
						
							| 87 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  →  ( √ ‘ 𝑦 )  =  ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) | 
						
							| 88 | 87 | eleq1d | ⊢ ( 𝑦  =  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  →  ( ( √ ‘ 𝑦 )  ∈  ℕ  ↔  ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ ) ) | 
						
							| 89 | 88 | ifbid | ⊢ ( 𝑦  =  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  →  if ( ( √ ‘ 𝑦 )  ∈  ℕ ,  1 ,  0 )  =  if ( ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ ,  1 ,  0 ) ) | 
						
							| 90 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) | 
						
							| 91 | 89 90 | breq12d | ⊢ ( 𝑦  =  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  →  ( if ( ( √ ‘ 𝑦 )  ∈  ℕ ,  1 ,  0 )  ≤  ( 𝐹 ‘ 𝑦 )  ↔  if ( ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ ,  1 ,  0 )  ≤  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) ) | 
						
							| 92 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 93 | 65 92 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 94 | 27 | nnzd | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 95 | 61 | nnred | ⊢ ( 𝜑  →  𝑃  ∈  ℝ ) | 
						
							| 96 |  | pcelnn | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( ( 𝑃  pCnt  𝐴 )  ∈  ℕ  ↔  𝑃  ∥  𝐴 ) ) | 
						
							| 97 | 11 27 96 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑃  pCnt  𝐴 )  ∈  ℕ  ↔  𝑃  ∥  𝐴 ) ) | 
						
							| 98 | 12 97 | mpbird | ⊢ ( 𝜑  →  ( 𝑃  pCnt  𝐴 )  ∈  ℕ ) | 
						
							| 99 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 100 |  | eluz2gt1 | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  1  <  𝑃 ) | 
						
							| 101 | 11 99 100 | 3syl | ⊢ ( 𝜑  →  1  <  𝑃 ) | 
						
							| 102 |  | expgt1 | ⊢ ( ( 𝑃  ∈  ℝ  ∧  ( 𝑃  pCnt  𝐴 )  ∈  ℕ  ∧  1  <  𝑃 )  →  1  <  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 103 | 95 98 101 102 | syl3anc | ⊢ ( 𝜑  →  1  <  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 104 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 105 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 106 | 105 | a1i | ⊢ ( 𝜑  →  0  <  1 ) | 
						
							| 107 | 62 | nnred | ⊢ ( 𝜑  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℝ ) | 
						
							| 108 | 62 | nngt0d | ⊢ ( 𝜑  →  0  <  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 109 | 27 | nnred | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 110 | 27 | nngt0d | ⊢ ( 𝜑  →  0  <  𝐴 ) | 
						
							| 111 |  | ltdiv2 | ⊢ ( ( ( 1  ∈  ℝ  ∧  0  <  1 )  ∧  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℝ  ∧  0  <  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( 1  <  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ↔  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  <  ( 𝐴  /  1 ) ) ) | 
						
							| 112 | 104 106 107 108 109 110 111 | syl222anc | ⊢ ( 𝜑  →  ( 1  <  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ↔  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  <  ( 𝐴  /  1 ) ) ) | 
						
							| 113 | 103 112 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  <  ( 𝐴  /  1 ) ) | 
						
							| 114 | 28 | div1d | ⊢ ( 𝜑  →  ( 𝐴  /  1 )  =  𝐴 ) | 
						
							| 115 | 113 114 | breqtrd | ⊢ ( 𝜑  →  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  <  𝐴 ) | 
						
							| 116 |  | elfzo2 | ⊢ ( ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ( 1 ..^ 𝐴 )  ↔  ( ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ( ℤ≥ ‘ 1 )  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  <  𝐴 ) ) | 
						
							| 117 | 93 94 115 116 | syl3anbrc | ⊢ ( 𝜑  →  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ( 1 ..^ 𝐴 ) ) | 
						
							| 118 | 91 13 117 | rspcdva | ⊢ ( 𝜑  →  if ( ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ ,  1 ,  0 )  ≤  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) | 
						
							| 119 | 118 | adantr | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  if ( ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ ,  1 ,  0 )  ≤  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) | 
						
							| 120 | 86 119 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  1  ≤  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) | 
						
							| 121 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 122 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 123 | 121 122 | pm3.2i | ⊢ ( 1  ∈  ℝ  ∧  0  ≤  1 ) | 
						
							| 124 | 123 | a1i | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 1  ∈  ℝ  ∧  0  ≤  1 ) ) | 
						
							| 125 | 1 2 3 4 5 6 7 8 9 | dchrisum0ff | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ ℝ ) | 
						
							| 126 | 125 62 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 127 | 126 | adantr | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 128 | 125 65 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℝ ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℝ ) | 
						
							| 130 |  | lemul12a | ⊢ ( ( ( ( 1  ∈  ℝ  ∧  0  ≤  1 )  ∧  ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℝ )  ∧  ( ( 1  ∈  ℝ  ∧  0  ≤  1 )  ∧  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℝ ) )  →  ( ( 1  ≤  ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∧  1  ≤  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) )  →  ( 1  ·  1 )  ≤  ( ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ·  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) ) ) | 
						
							| 131 | 124 127 124 129 130 | syl22anc | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( ( 1  ≤  ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∧  1  ≤  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) )  →  ( 1  ·  1 )  ≤  ( ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ·  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) ) ) | 
						
							| 132 | 58 120 131 | mp2and | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  ( 1  ·  1 )  ≤  ( ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ·  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) ) | 
						
							| 133 | 16 132 | eqbrtrrid | ⊢ ( ( 𝜑  ∧  ( √ ‘ 𝐴 )  ∈  ℕ )  →  1  ≤  ( ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ·  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) ) | 
						
							| 134 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 135 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 136 | 121 135 | ifcli | ⊢ if ( ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ,  1 ,  0 )  ∈  ℝ | 
						
							| 137 | 136 | a1i | ⊢ ( 𝜑  →  if ( ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ,  1 ,  0 )  ∈  ℝ ) | 
						
							| 138 |  | breq2 | ⊢ ( 1  =  if ( ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ,  1 ,  0 )  →  ( 0  ≤  1  ↔  0  ≤  if ( ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ,  1 ,  0 ) ) ) | 
						
							| 139 |  | breq2 | ⊢ ( 0  =  if ( ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ,  1 ,  0 )  →  ( 0  ≤  0  ↔  0  ≤  if ( ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ,  1 ,  0 ) ) ) | 
						
							| 140 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 141 | 138 139 122 140 | keephyp | ⊢ 0  ≤  if ( ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ,  1 ,  0 ) | 
						
							| 142 | 141 | a1i | ⊢ ( 𝜑  →  0  ≤  if ( ( √ ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℕ ,  1 ,  0 ) ) | 
						
							| 143 | 134 137 126 142 56 | letrd | ⊢ ( 𝜑  →  0  ≤  ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 144 | 121 135 | ifcli | ⊢ if ( ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ ,  1 ,  0 )  ∈  ℝ | 
						
							| 145 | 144 | a1i | ⊢ ( 𝜑  →  if ( ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ ,  1 ,  0 )  ∈  ℝ ) | 
						
							| 146 |  | breq2 | ⊢ ( 1  =  if ( ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ ,  1 ,  0 )  →  ( 0  ≤  1  ↔  0  ≤  if ( ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ ,  1 ,  0 ) ) ) | 
						
							| 147 |  | breq2 | ⊢ ( 0  =  if ( ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ ,  1 ,  0 )  →  ( 0  ≤  0  ↔  0  ≤  if ( ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ ,  1 ,  0 ) ) ) | 
						
							| 148 | 146 147 122 140 | keephyp | ⊢ 0  ≤  if ( ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ ,  1 ,  0 ) | 
						
							| 149 | 148 | a1i | ⊢ ( 𝜑  →  0  ≤  if ( ( √ ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  ∈  ℕ ,  1 ,  0 ) ) | 
						
							| 150 | 134 145 128 149 118 | letrd | ⊢ ( 𝜑  →  0  ≤  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) | 
						
							| 151 | 126 128 143 150 | mulge0d | ⊢ ( 𝜑  →  0  ≤  ( ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ·  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) ) | 
						
							| 152 | 151 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( √ ‘ 𝐴 )  ∈  ℕ )  →  0  ≤  ( ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ·  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) ) | 
						
							| 153 | 14 15 133 152 | ifbothda | ⊢ ( 𝜑  →  if ( ( √ ‘ 𝐴 )  ∈  ℕ ,  1 ,  0 )  ≤  ( ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ·  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) ) | 
						
							| 154 | 62 | nncnd | ⊢ ( 𝜑  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℂ ) | 
						
							| 155 | 62 | nnne0d | ⊢ ( 𝜑  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ≠  0 ) | 
						
							| 156 | 28 154 155 | divcan2d | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ·  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  =  𝐴 ) | 
						
							| 157 | 156 | fveq2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ·  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 158 |  | pcndvds2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ¬  𝑃  ∥  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 159 | 11 27 158 | syl2anc | ⊢ ( 𝜑  →  ¬  𝑃  ∥  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 160 |  | coprm | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℤ )  →  ( ¬  𝑃  ∥  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ↔  ( 𝑃  gcd  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  =  1 ) ) | 
						
							| 161 | 11 66 160 | syl2anc | ⊢ ( 𝜑  →  ( ¬  𝑃  ∥  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ↔  ( 𝑃  gcd  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  =  1 ) ) | 
						
							| 162 | 159 161 | mpbid | ⊢ ( 𝜑  →  ( 𝑃  gcd  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  =  1 ) | 
						
							| 163 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 164 | 11 163 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 165 |  | rpexp1i | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ∈  ℤ  ∧  ( 𝑃  pCnt  𝐴 )  ∈  ℕ0 )  →  ( ( 𝑃  gcd  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  =  1  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  gcd  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  =  1 ) ) | 
						
							| 166 | 164 66 55 165 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑃  gcd  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  =  1  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  gcd  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  =  1 ) ) | 
						
							| 167 | 162 166 | mpd | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  gcd  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  =  1 ) | 
						
							| 168 | 1 2 3 4 5 6 7 8 62 65 167 | dchrisum0fmul | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ·  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) )  =  ( ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ·  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) ) | 
						
							| 169 | 157 168 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  ( ( 𝐹 ‘ ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  ·  ( 𝐹 ‘ ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) ) | 
						
							| 170 | 153 169 | breqtrrd | ⊢ ( 𝜑  →  if ( ( √ ‘ 𝐴 )  ∈  ℕ ,  1 ,  0 )  ≤  ( 𝐹 ‘ 𝐴 ) ) |