| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpvmasum.z | ⊢ 𝑍  =  ( ℤ/nℤ ‘ 𝑁 ) | 
						
							| 2 |  | rpvmasum.l | ⊢ 𝐿  =  ( ℤRHom ‘ 𝑍 ) | 
						
							| 3 |  | rpvmasum.a | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 4 |  | rpvmasum2.g | ⊢ 𝐺  =  ( DChr ‘ 𝑁 ) | 
						
							| 5 |  | rpvmasum2.d | ⊢ 𝐷  =  ( Base ‘ 𝐺 ) | 
						
							| 6 |  | rpvmasum2.1 | ⊢  1   =  ( 0g ‘ 𝐺 ) | 
						
							| 7 |  | dchrisum0f.f | ⊢ 𝐹  =  ( 𝑏  ∈  ℕ  ↦  Σ 𝑣  ∈  { 𝑞  ∈  ℕ  ∣  𝑞  ∥  𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑣 ) ) ) | 
						
							| 8 |  | dchrisum0f.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐷 ) | 
						
							| 9 |  | dchrisum0flb.r | ⊢ ( 𝜑  →  𝑋 : ( Base ‘ 𝑍 ) ⟶ ℝ ) | 
						
							| 10 |  | dchrisum0flblem1.1 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 11 |  | dchrisum0flblem1.2 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 12 |  | 1red | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  1  ∈  ℝ ) | 
						
							| 13 |  | 0red | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  ∧  ¬  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  0  ∈  ℝ ) | 
						
							| 14 | 12 13 | ifclda | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ∈  ℝ ) | 
						
							| 15 |  | 1red | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  1  ∈  ℝ ) | 
						
							| 16 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝐴 )  ∈  Fin ) | 
						
							| 17 | 3 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑍 )  =  ( Base ‘ 𝑍 ) | 
						
							| 19 | 1 18 2 | znzrhfo | ⊢ ( 𝑁  ∈  ℕ0  →  𝐿 : ℤ –onto→ ( Base ‘ 𝑍 ) ) | 
						
							| 20 |  | fof | ⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑍 )  →  𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) | 
						
							| 21 | 17 19 20 | 3syl | ⊢ ( 𝜑  →  𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) | 
						
							| 22 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 23 | 10 22 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 24 | 21 23 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝑃 )  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 25 | 9 24 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ∈  ℝ ) | 
						
							| 26 |  | elfznn0 | ⊢ ( 𝑖  ∈  ( 0 ... 𝐴 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 27 |  | reexpcl | ⊢ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ∈  ℝ  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 )  ∈  ℝ ) | 
						
							| 28 | 25 26 27 | syl2an | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 )  ∈  ℝ ) | 
						
							| 29 | 16 28 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 )  ∈  ℝ ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  Σ 𝑖  ∈  ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 )  ∈  ℝ ) | 
						
							| 31 |  | breq1 | ⊢ ( 1  =  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  →  ( 1  ≤  1  ↔  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ≤  1 ) ) | 
						
							| 32 |  | breq1 | ⊢ ( 0  =  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  →  ( 0  ≤  1  ↔  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ≤  1 ) ) | 
						
							| 33 |  | 1le1 | ⊢ 1  ≤  1 | 
						
							| 34 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 35 | 31 32 33 34 | keephyp | ⊢ if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ≤  1 | 
						
							| 36 | 35 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ≤  1 ) | 
						
							| 37 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 38 | 11 37 | eleqtrdi | ⊢ ( 𝜑  →  𝐴  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 39 |  | fzn0 | ⊢ ( ( 0 ... 𝐴 )  ≠  ∅  ↔  𝐴  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 40 | 38 39 | sylibr | ⊢ ( 𝜑  →  ( 0 ... 𝐴 )  ≠  ∅ ) | 
						
							| 41 |  | hashnncl | ⊢ ( ( 0 ... 𝐴 )  ∈  Fin  →  ( ( ♯ ‘ ( 0 ... 𝐴 ) )  ∈  ℕ  ↔  ( 0 ... 𝐴 )  ≠  ∅ ) ) | 
						
							| 42 | 16 41 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 0 ... 𝐴 ) )  ∈  ℕ  ↔  ( 0 ... 𝐴 )  ≠  ∅ ) ) | 
						
							| 43 | 40 42 | mpbird | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ... 𝐴 ) )  ∈  ℕ ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  ( ♯ ‘ ( 0 ... 𝐴 ) )  ∈  ℕ ) | 
						
							| 45 | 44 | nnge1d | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  1  ≤  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) | 
						
							| 46 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 )  =  ( 1 ↑ 𝑖 ) ) | 
						
							| 48 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 0 ... 𝐴 )  →  𝑖  ∈  ℤ ) | 
						
							| 49 |  | 1exp | ⊢ ( 𝑖  ∈  ℤ  →  ( 1 ↑ 𝑖 )  =  1 ) | 
						
							| 50 | 48 49 | syl | ⊢ ( 𝑖  ∈  ( 0 ... 𝐴 )  →  ( 1 ↑ 𝑖 )  =  1 ) | 
						
							| 51 | 47 50 | sylan9eq | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 )  =  1 ) | 
						
							| 52 | 51 | sumeq2dv | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  Σ 𝑖  ∈  ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 )  =  Σ 𝑖  ∈  ( 0 ... 𝐴 ) 1 ) | 
						
							| 53 |  | fzfid | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  ( 0 ... 𝐴 )  ∈  Fin ) | 
						
							| 54 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 55 |  | fsumconst | ⊢ ( ( ( 0 ... 𝐴 )  ∈  Fin  ∧  1  ∈  ℂ )  →  Σ 𝑖  ∈  ( 0 ... 𝐴 ) 1  =  ( ( ♯ ‘ ( 0 ... 𝐴 ) )  ·  1 ) ) | 
						
							| 56 | 53 54 55 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  Σ 𝑖  ∈  ( 0 ... 𝐴 ) 1  =  ( ( ♯ ‘ ( 0 ... 𝐴 ) )  ·  1 ) ) | 
						
							| 57 | 44 | nncnd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  ( ♯ ‘ ( 0 ... 𝐴 ) )  ∈  ℂ ) | 
						
							| 58 | 57 | mulridd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  ( ( ♯ ‘ ( 0 ... 𝐴 ) )  ·  1 )  =  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) | 
						
							| 59 | 52 56 58 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  Σ 𝑖  ∈  ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 )  =  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) | 
						
							| 60 | 45 59 | breqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  1  ≤  Σ 𝑖  ∈  ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) | 
						
							| 61 | 14 15 30 36 60 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 )  →  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ≤  Σ 𝑖  ∈  ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) | 
						
							| 62 |  | oveq1 | ⊢ ( 1  =  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  →  ( 1  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) )  =  ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) | 
						
							| 63 | 62 | breq1d | ⊢ ( 1  =  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  →  ( ( 1  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) )  ≤  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  ↔  ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) )  ≤  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) ) ) ) | 
						
							| 64 |  | oveq1 | ⊢ ( 0  =  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  →  ( 0  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) )  =  ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) | 
						
							| 65 | 64 | breq1d | ⊢ ( 0  =  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  →  ( ( 0  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) )  ≤  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  ↔  ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) )  ≤  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) ) ) ) | 
						
							| 66 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 67 | 25 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ∈  ℝ ) | 
						
							| 68 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ∈  ℝ )  →  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  ∈  ℝ ) | 
						
							| 69 | 66 67 68 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  ∈  ℝ ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  ∈  ℝ ) | 
						
							| 71 | 70 | leidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  ≤  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) | 
						
							| 72 | 69 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  ∈  ℂ ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  ∈  ℂ ) | 
						
							| 74 | 73 | mullidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( 1  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) )  =  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) | 
						
							| 75 |  | nn0p1nn | ⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴  +  1 )  ∈  ℕ ) | 
						
							| 76 | 11 75 | syl | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  ∈  ℕ ) | 
						
							| 77 | 76 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  0 )  →  ( 𝐴  +  1 )  ∈  ℕ ) | 
						
							| 78 | 77 | 0expd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  0 )  →  ( 0 ↑ ( 𝐴  +  1 ) )  =  0 ) | 
						
							| 79 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  0 )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  0 ) | 
						
							| 80 | 79 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  0 )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) )  =  ( 0 ↑ ( 𝐴  +  1 ) ) ) | 
						
							| 81 | 78 80 79 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  0 )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) )  =  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) | 
						
							| 82 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 83 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  𝐴  ∈  ℕ0 ) | 
						
							| 84 |  | expp1 | ⊢ ( ( - 1  ∈  ℂ  ∧  𝐴  ∈  ℕ0 )  →  ( - 1 ↑ ( 𝐴  +  1 ) )  =  ( ( - 1 ↑ 𝐴 )  ·  - 1 ) ) | 
						
							| 85 | 82 83 84 | sylancr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( - 1 ↑ ( 𝐴  +  1 ) )  =  ( ( - 1 ↑ 𝐴 )  ·  - 1 ) ) | 
						
							| 86 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 87 | 10 86 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 88 | 87 11 | nnexpcld | ⊢ ( 𝜑  →  ( 𝑃 ↑ 𝐴 )  ∈  ℕ ) | 
						
							| 89 | 88 | nncnd | ⊢ ( 𝜑  →  ( 𝑃 ↑ 𝐴 )  ∈  ℂ ) | 
						
							| 90 | 89 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( 𝑃 ↑ 𝐴 )  ∈  ℂ ) | 
						
							| 91 | 90 | sqsqrtd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ↑ 2 )  =  ( 𝑃 ↑ 𝐴 ) ) | 
						
							| 92 | 91 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( 𝑃  pCnt  ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ↑ 2 ) )  =  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) ) | 
						
							| 93 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  𝑃  ∈  ℙ ) | 
						
							| 94 |  | nnq | ⊢ ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ  →  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℚ ) | 
						
							| 95 | 94 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℚ ) | 
						
							| 96 |  | nnne0 | ⊢ ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ  →  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ≠  0 ) | 
						
							| 97 | 96 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ≠  0 ) | 
						
							| 98 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 99 | 98 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  2  ∈  ℤ ) | 
						
							| 100 |  | pcexp | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℚ  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ≠  0 )  ∧  2  ∈  ℤ )  →  ( 𝑃  pCnt  ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ↑ 2 ) )  =  ( 2  ·  ( 𝑃  pCnt  ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) ) | 
						
							| 101 | 93 95 97 99 100 | syl121anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( 𝑃  pCnt  ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ↑ 2 ) )  =  ( 2  ·  ( 𝑃  pCnt  ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) ) | 
						
							| 102 | 83 | nn0zd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  𝐴  ∈  ℤ ) | 
						
							| 103 |  | pcid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  =  𝐴 ) | 
						
							| 104 | 93 102 103 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  =  𝐴 ) | 
						
							| 105 | 92 101 104 | 3eqtr3rd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  𝐴  =  ( 2  ·  ( 𝑃  pCnt  ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) ) | 
						
							| 106 | 105 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( - 1 ↑ 𝐴 )  =  ( - 1 ↑ ( 2  ·  ( 𝑃  pCnt  ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) ) ) | 
						
							| 107 | 82 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  - 1  ∈  ℂ ) | 
						
							| 108 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ) | 
						
							| 109 | 93 108 | pccld | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( 𝑃  pCnt  ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) )  ∈  ℕ0 ) | 
						
							| 110 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 111 | 110 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  2  ∈  ℕ0 ) | 
						
							| 112 | 107 109 111 | expmuld | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( - 1 ↑ ( 2  ·  ( 𝑃  pCnt  ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) )  =  ( ( - 1 ↑ 2 ) ↑ ( 𝑃  pCnt  ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) ) | 
						
							| 113 |  | neg1sqe1 | ⊢ ( - 1 ↑ 2 )  =  1 | 
						
							| 114 | 113 | oveq1i | ⊢ ( ( - 1 ↑ 2 ) ↑ ( 𝑃  pCnt  ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) )  =  ( 1 ↑ ( 𝑃  pCnt  ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) | 
						
							| 115 | 109 | nn0zd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( 𝑃  pCnt  ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) )  ∈  ℤ ) | 
						
							| 116 |  | 1exp | ⊢ ( ( 𝑃  pCnt  ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) )  ∈  ℤ  →  ( 1 ↑ ( 𝑃  pCnt  ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) )  =  1 ) | 
						
							| 117 | 115 116 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( 1 ↑ ( 𝑃  pCnt  ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) )  =  1 ) | 
						
							| 118 | 114 117 | eqtrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( ( - 1 ↑ 2 ) ↑ ( 𝑃  pCnt  ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) )  =  1 ) | 
						
							| 119 | 106 112 118 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( - 1 ↑ 𝐴 )  =  1 ) | 
						
							| 120 | 119 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( ( - 1 ↑ 𝐴 )  ·  - 1 )  =  ( 1  ·  - 1 ) ) | 
						
							| 121 | 82 | mullidi | ⊢ ( 1  ·  - 1 )  =  - 1 | 
						
							| 122 | 120 121 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( ( - 1 ↑ 𝐴 )  ·  - 1 )  =  - 1 ) | 
						
							| 123 | 85 122 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( - 1 ↑ ( 𝐴  +  1 ) )  =  - 1 ) | 
						
							| 124 | 123 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  ( - 1 ↑ ( 𝐴  +  1 ) )  =  - 1 ) | 
						
							| 125 | 25 | recnd | ⊢ ( 𝜑  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 126 | 125 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 127 | 126 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 128 | 127 | negnegd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  - - ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) | 
						
							| 129 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 ) | 
						
							| 130 | 129 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 ) | 
						
							| 131 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  𝑋  ∈  𝐷 ) | 
						
							| 132 |  | eqid | ⊢ ( Unit ‘ 𝑍 )  =  ( Unit ‘ 𝑍 ) | 
						
							| 133 | 4 1 5 18 132 8 24 | dchrn0 | ⊢ ( 𝜑  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0  ↔  ( 𝐿 ‘ 𝑃 )  ∈  ( Unit ‘ 𝑍 ) ) ) | 
						
							| 134 | 133 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0  ↔  ( 𝐿 ‘ 𝑃 )  ∈  ( Unit ‘ 𝑍 ) ) ) | 
						
							| 135 | 134 | biimpa | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  ( 𝐿 ‘ 𝑃 )  ∈  ( Unit ‘ 𝑍 ) ) | 
						
							| 136 | 4 5 131 1 132 135 | dchrabs | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  =  1 ) | 
						
							| 137 |  | eqeq1 | ⊢ ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  =  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  →  ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  =  1  ↔  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 ) ) | 
						
							| 138 | 136 137 | syl5ibcom | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  =  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 ) ) | 
						
							| 139 | 138 | necon3ad | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1  →  ¬  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  =  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) | 
						
							| 140 | 130 139 | mpd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  ¬  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  =  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) | 
						
							| 141 | 67 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ∈  ℝ ) | 
						
							| 142 | 141 | absord | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  =  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ∨  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  =  - ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) | 
						
							| 143 | 142 | ord | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  ( ¬  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  =  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  →  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  =  - ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) | 
						
							| 144 | 140 143 | mpd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  =  - ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) | 
						
							| 145 | 144 136 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  - ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  1 ) | 
						
							| 146 | 145 | negeqd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  - - ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  - 1 ) | 
						
							| 147 | 128 146 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  =  - 1 ) | 
						
							| 148 | 147 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) )  =  ( - 1 ↑ ( 𝐴  +  1 ) ) ) | 
						
							| 149 | 124 148 147 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  0 )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) )  =  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) | 
						
							| 150 | 81 149 | pm2.61dane | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) )  =  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) | 
						
							| 151 | 150 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  =  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) | 
						
							| 152 | 71 74 151 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( 1  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) )  ≤  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) ) ) | 
						
							| 153 | 72 | mul02d | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( 0  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) )  =  0 ) | 
						
							| 154 |  | peano2nn0 | ⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴  +  1 )  ∈  ℕ0 ) | 
						
							| 155 | 11 154 | syl | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  ∈  ℕ0 ) | 
						
							| 156 | 25 155 | reexpcld | ⊢ ( 𝜑  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) )  ∈  ℝ ) | 
						
							| 157 | 156 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) )  ∈  ℝ ) | 
						
							| 158 | 157 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) )  ∈  ℂ ) | 
						
							| 159 | 158 | abscld | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  ∈  ℝ ) | 
						
							| 160 |  | 1red | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  1  ∈  ℝ ) | 
						
							| 161 | 157 | leabsd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) )  ≤  ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) ) ) | 
						
							| 162 | 155 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( 𝐴  +  1 )  ∈  ℕ0 ) | 
						
							| 163 | 126 162 | absexpd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  =  ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ↑ ( 𝐴  +  1 ) ) ) | 
						
							| 164 | 126 | abscld | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  ∈  ℝ ) | 
						
							| 165 | 126 | absge0d | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  0  ≤  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) | 
						
							| 166 | 4 5 1 18 8 24 | dchrabs2 | ⊢ ( 𝜑  →  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  ≤  1 ) | 
						
							| 167 | 166 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  ≤  1 ) | 
						
							| 168 |  | exple1 | ⊢ ( ( ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  ∈  ℝ  ∧  0  ≤  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  ∧  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  ≤  1 )  ∧  ( 𝐴  +  1 )  ∈  ℕ0 )  →  ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ↑ ( 𝐴  +  1 ) )  ≤  1 ) | 
						
							| 169 | 164 165 167 162 168 | syl31anc | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ↑ ( 𝐴  +  1 ) )  ≤  1 ) | 
						
							| 170 | 163 169 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  ≤  1 ) | 
						
							| 171 | 157 159 160 161 170 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) )  ≤  1 ) | 
						
							| 172 |  | subge0 | ⊢ ( ( 1  ∈  ℝ  ∧  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) )  ∈  ℝ )  →  ( 0  ≤  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  ↔  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) )  ≤  1 ) ) | 
						
							| 173 | 66 157 172 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( 0  ≤  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  ↔  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) )  ≤  1 ) ) | 
						
							| 174 | 171 173 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  0  ≤  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) ) ) | 
						
							| 175 | 153 174 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( 0  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) )  ≤  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) ) ) | 
						
							| 176 | 175 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  ∧  ¬  ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ )  →  ( 0  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) )  ≤  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) ) ) | 
						
							| 177 | 63 65 152 176 | ifbothda | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) )  ≤  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) ) ) | 
						
							| 178 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 179 | 66 178 | ifcli | ⊢ if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ∈  ℝ | 
						
							| 180 | 179 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ∈  ℝ ) | 
						
							| 181 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) )  ∈  ℝ )  →  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  ∈  ℝ ) | 
						
							| 182 | 66 157 181 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  ∈  ℝ ) | 
						
							| 183 | 67 | leabsd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≤  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) | 
						
							| 184 | 67 164 160 183 167 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≤  1 ) | 
						
							| 185 | 129 | necomd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  1  ≠  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) | 
						
							| 186 | 67 160 184 185 | leneltd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  <  1 ) | 
						
							| 187 |  | posdif | ⊢ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  <  1  ↔  0  <  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) | 
						
							| 188 | 67 66 187 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  <  1  ↔  0  <  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) | 
						
							| 189 | 186 188 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  0  <  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) | 
						
							| 190 |  | lemuldiv | ⊢ ( ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ∈  ℝ  ∧  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  ∈  ℝ  ∧  ( ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  ∈  ℝ  ∧  0  <  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) )  →  ( ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) )  ≤  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  ↔  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ≤  ( ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  /  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) ) | 
						
							| 191 | 180 182 69 189 190 | syl112anc | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ·  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) )  ≤  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  ↔  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ≤  ( ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  /  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) ) | 
						
							| 192 | 177 191 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ≤  ( ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  /  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) | 
						
							| 193 | 11 | nn0zd | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 194 |  | fzval3 | ⊢ ( 𝐴  ∈  ℤ  →  ( 0 ... 𝐴 )  =  ( 0 ..^ ( 𝐴  +  1 ) ) ) | 
						
							| 195 | 193 194 | syl | ⊢ ( 𝜑  →  ( 0 ... 𝐴 )  =  ( 0 ..^ ( 𝐴  +  1 ) ) ) | 
						
							| 196 | 195 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( 0 ... 𝐴 )  =  ( 0 ..^ ( 𝐴  +  1 ) ) ) | 
						
							| 197 | 196 | sumeq1d | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  Σ 𝑖  ∈  ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 )  =  Σ 𝑖  ∈  ( 0 ..^ ( 𝐴  +  1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) | 
						
							| 198 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 199 | 198 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  0  ∈  ℕ0 ) | 
						
							| 200 | 155 37 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 201 | 200 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( 𝐴  +  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 202 | 126 129 199 201 | geoserg | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  Σ 𝑖  ∈  ( 0 ..^ ( 𝐴  +  1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 )  =  ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 0 )  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  /  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) | 
						
							| 203 | 126 | exp0d | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 0 )  =  1 ) | 
						
							| 204 | 203 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 0 )  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  =  ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) ) ) | 
						
							| 205 | 204 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 0 )  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  /  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) )  =  ( ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  /  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) | 
						
							| 206 | 197 202 205 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  Σ 𝑖  ∈  ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 )  =  ( ( 1  −  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴  +  1 ) ) )  /  ( 1  −  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) | 
						
							| 207 | 192 206 | breqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ≠  1 )  →  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ≤  Σ 𝑖  ∈  ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) | 
						
							| 208 | 61 207 | pm2.61dane | ⊢ ( 𝜑  →  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ≤  Σ 𝑖  ∈  ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) | 
						
							| 209 | 1 2 3 4 5 6 7 | dchrisum0fval | ⊢ ( ( 𝑃 ↑ 𝐴 )  ∈  ℕ  →  ( 𝐹 ‘ ( 𝑃 ↑ 𝐴 ) )  =  Σ 𝑘  ∈  { 𝑞  ∈  ℕ  ∣  𝑞  ∥  ( 𝑃 ↑ 𝐴 ) } ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) | 
						
							| 210 | 88 209 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝑃 ↑ 𝐴 ) )  =  Σ 𝑘  ∈  { 𝑞  ∈  ℕ  ∣  𝑞  ∥  ( 𝑃 ↑ 𝐴 ) } ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) | 
						
							| 211 |  | 2fveq3 | ⊢ ( 𝑘  =  ( 𝑃 ↑ 𝑖 )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) )  =  ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑃 ↑ 𝑖 ) ) ) ) | 
						
							| 212 |  | eqid | ⊢ ( 𝑏  ∈  ( 0 ... 𝐴 )  ↦  ( 𝑃 ↑ 𝑏 ) )  =  ( 𝑏  ∈  ( 0 ... 𝐴 )  ↦  ( 𝑃 ↑ 𝑏 ) ) | 
						
							| 213 | 212 | dvdsppwf1o | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝑏  ∈  ( 0 ... 𝐴 )  ↦  ( 𝑃 ↑ 𝑏 ) ) : ( 0 ... 𝐴 ) –1-1-onto→ { 𝑞  ∈  ℕ  ∣  𝑞  ∥  ( 𝑃 ↑ 𝐴 ) } ) | 
						
							| 214 | 10 11 213 | syl2anc | ⊢ ( 𝜑  →  ( 𝑏  ∈  ( 0 ... 𝐴 )  ↦  ( 𝑃 ↑ 𝑏 ) ) : ( 0 ... 𝐴 ) –1-1-onto→ { 𝑞  ∈  ℕ  ∣  𝑞  ∥  ( 𝑃 ↑ 𝐴 ) } ) | 
						
							| 215 |  | oveq2 | ⊢ ( 𝑏  =  𝑖  →  ( 𝑃 ↑ 𝑏 )  =  ( 𝑃 ↑ 𝑖 ) ) | 
						
							| 216 |  | ovex | ⊢ ( 𝑃 ↑ 𝑏 )  ∈  V | 
						
							| 217 | 215 212 216 | fvmpt3i | ⊢ ( 𝑖  ∈  ( 0 ... 𝐴 )  →  ( ( 𝑏  ∈  ( 0 ... 𝐴 )  ↦  ( 𝑃 ↑ 𝑏 ) ) ‘ 𝑖 )  =  ( 𝑃 ↑ 𝑖 ) ) | 
						
							| 218 | 217 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑏  ∈  ( 0 ... 𝐴 )  ↦  ( 𝑃 ↑ 𝑏 ) ) ‘ 𝑖 )  =  ( 𝑃 ↑ 𝑖 ) ) | 
						
							| 219 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑞  ∈  ℕ  ∣  𝑞  ∥  ( 𝑃 ↑ 𝐴 ) } )  →  𝑋 : ( Base ‘ 𝑍 ) ⟶ ℝ ) | 
						
							| 220 |  | elrabi | ⊢ ( 𝑘  ∈  { 𝑞  ∈  ℕ  ∣  𝑞  ∥  ( 𝑃 ↑ 𝐴 ) }  →  𝑘  ∈  ℕ ) | 
						
							| 221 | 220 | nnzd | ⊢ ( 𝑘  ∈  { 𝑞  ∈  ℕ  ∣  𝑞  ∥  ( 𝑃 ↑ 𝐴 ) }  →  𝑘  ∈  ℤ ) | 
						
							| 222 |  | ffvelcdm | ⊢ ( ( 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 )  ∧  𝑘  ∈  ℤ )  →  ( 𝐿 ‘ 𝑘 )  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 223 | 21 221 222 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑞  ∈  ℕ  ∣  𝑞  ∥  ( 𝑃 ↑ 𝐴 ) } )  →  ( 𝐿 ‘ 𝑘 )  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 224 | 219 223 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑞  ∈  ℕ  ∣  𝑞  ∥  ( 𝑃 ↑ 𝐴 ) } )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 225 | 224 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑞  ∈  ℕ  ∣  𝑞  ∥  ( 𝑃 ↑ 𝐴 ) } )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 226 | 211 16 214 218 225 | fsumf1o | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑞  ∈  ℕ  ∣  𝑞  ∥  ( 𝑃 ↑ 𝐴 ) } ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) )  =  Σ 𝑖  ∈  ( 0 ... 𝐴 ) ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑃 ↑ 𝑖 ) ) ) ) | 
						
							| 227 |  | zsubrg | ⊢ ℤ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 228 |  | eqid | ⊢ ( mulGrp ‘ ℂfld )  =  ( mulGrp ‘ ℂfld ) | 
						
							| 229 | 228 | subrgsubm | ⊢ ( ℤ  ∈  ( SubRing ‘ ℂfld )  →  ℤ  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) | 
						
							| 230 | 227 229 | mp1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ℤ  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) | 
						
							| 231 | 26 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 232 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  𝑃  ∈  ℤ ) | 
						
							| 233 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) )  =  ( .g ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 234 |  | zringmpg | ⊢ ( ( mulGrp ‘ ℂfld )  ↾s  ℤ )  =  ( mulGrp ‘ ℤring ) | 
						
							| 235 | 234 | eqcomi | ⊢ ( mulGrp ‘ ℤring )  =  ( ( mulGrp ‘ ℂfld )  ↾s  ℤ ) | 
						
							| 236 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ℤring ) )  =  ( .g ‘ ( mulGrp ‘ ℤring ) ) | 
						
							| 237 | 233 235 236 | submmulg | ⊢ ( ( ℤ  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) )  ∧  𝑖  ∈  ℕ0  ∧  𝑃  ∈  ℤ )  →  ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑃 )  =  ( 𝑖 ( .g ‘ ( mulGrp ‘ ℤring ) ) 𝑃 ) ) | 
						
							| 238 | 230 231 232 237 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑃 )  =  ( 𝑖 ( .g ‘ ( mulGrp ‘ ℤring ) ) 𝑃 ) ) | 
						
							| 239 | 87 | nncnd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 240 |  | cnfldexp | ⊢ ( ( 𝑃  ∈  ℂ  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑃 )  =  ( 𝑃 ↑ 𝑖 ) ) | 
						
							| 241 | 239 26 240 | syl2an | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑃 )  =  ( 𝑃 ↑ 𝑖 ) ) | 
						
							| 242 | 238 241 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑖 ( .g ‘ ( mulGrp ‘ ℤring ) ) 𝑃 )  =  ( 𝑃 ↑ 𝑖 ) ) | 
						
							| 243 | 242 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐿 ‘ ( 𝑖 ( .g ‘ ( mulGrp ‘ ℤring ) ) 𝑃 ) )  =  ( 𝐿 ‘ ( 𝑃 ↑ 𝑖 ) ) ) | 
						
							| 244 | 1 | zncrng | ⊢ ( 𝑁  ∈  ℕ0  →  𝑍  ∈  CRing ) | 
						
							| 245 |  | crngring | ⊢ ( 𝑍  ∈  CRing  →  𝑍  ∈  Ring ) | 
						
							| 246 | 17 244 245 | 3syl | ⊢ ( 𝜑  →  𝑍  ∈  Ring ) | 
						
							| 247 | 2 | zrhrhm | ⊢ ( 𝑍  ∈  Ring  →  𝐿  ∈  ( ℤring  RingHom  𝑍 ) ) | 
						
							| 248 |  | eqid | ⊢ ( mulGrp ‘ ℤring )  =  ( mulGrp ‘ ℤring ) | 
						
							| 249 |  | eqid | ⊢ ( mulGrp ‘ 𝑍 )  =  ( mulGrp ‘ 𝑍 ) | 
						
							| 250 | 248 249 | rhmmhm | ⊢ ( 𝐿  ∈  ( ℤring  RingHom  𝑍 )  →  𝐿  ∈  ( ( mulGrp ‘ ℤring )  MndHom  ( mulGrp ‘ 𝑍 ) ) ) | 
						
							| 251 | 246 247 250 | 3syl | ⊢ ( 𝜑  →  𝐿  ∈  ( ( mulGrp ‘ ℤring )  MndHom  ( mulGrp ‘ 𝑍 ) ) ) | 
						
							| 252 | 251 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  𝐿  ∈  ( ( mulGrp ‘ ℤring )  MndHom  ( mulGrp ‘ 𝑍 ) ) ) | 
						
							| 253 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 254 | 248 253 | mgpbas | ⊢ ℤ  =  ( Base ‘ ( mulGrp ‘ ℤring ) ) | 
						
							| 255 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑍 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑍 ) ) | 
						
							| 256 | 254 236 255 | mhmmulg | ⊢ ( ( 𝐿  ∈  ( ( mulGrp ‘ ℤring )  MndHom  ( mulGrp ‘ 𝑍 ) )  ∧  𝑖  ∈  ℕ0  ∧  𝑃  ∈  ℤ )  →  ( 𝐿 ‘ ( 𝑖 ( .g ‘ ( mulGrp ‘ ℤring ) ) 𝑃 ) )  =  ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( 𝐿 ‘ 𝑃 ) ) ) | 
						
							| 257 | 252 231 232 256 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐿 ‘ ( 𝑖 ( .g ‘ ( mulGrp ‘ ℤring ) ) 𝑃 ) )  =  ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( 𝐿 ‘ 𝑃 ) ) ) | 
						
							| 258 | 243 257 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐿 ‘ ( 𝑃 ↑ 𝑖 ) )  =  ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( 𝐿 ‘ 𝑃 ) ) ) | 
						
							| 259 | 258 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑃 ↑ 𝑖 ) ) )  =  ( 𝑋 ‘ ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( 𝐿 ‘ 𝑃 ) ) ) ) | 
						
							| 260 | 4 1 5 | dchrmhm | ⊢ 𝐷  ⊆  ( ( mulGrp ‘ 𝑍 )  MndHom  ( mulGrp ‘ ℂfld ) ) | 
						
							| 261 | 260 8 | sselid | ⊢ ( 𝜑  →  𝑋  ∈  ( ( mulGrp ‘ 𝑍 )  MndHom  ( mulGrp ‘ ℂfld ) ) ) | 
						
							| 262 | 261 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  𝑋  ∈  ( ( mulGrp ‘ 𝑍 )  MndHom  ( mulGrp ‘ ℂfld ) ) ) | 
						
							| 263 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐿 ‘ 𝑃 )  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 264 | 249 18 | mgpbas | ⊢ ( Base ‘ 𝑍 )  =  ( Base ‘ ( mulGrp ‘ 𝑍 ) ) | 
						
							| 265 | 264 255 233 | mhmmulg | ⊢ ( ( 𝑋  ∈  ( ( mulGrp ‘ 𝑍 )  MndHom  ( mulGrp ‘ ℂfld ) )  ∧  𝑖  ∈  ℕ0  ∧  ( 𝐿 ‘ 𝑃 )  ∈  ( Base ‘ 𝑍 ) )  →  ( 𝑋 ‘ ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( 𝐿 ‘ 𝑃 ) ) )  =  ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) | 
						
							| 266 | 262 231 263 265 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑋 ‘ ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( 𝐿 ‘ 𝑃 ) ) )  =  ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) | 
						
							| 267 |  | cnfldexp | ⊢ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) )  ∈  ℂ  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  =  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) | 
						
							| 268 | 125 26 267 | syl2an | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) )  =  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) | 
						
							| 269 | 259 266 268 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑃 ↑ 𝑖 ) ) )  =  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) | 
						
							| 270 | 269 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 0 ... 𝐴 ) ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑃 ↑ 𝑖 ) ) )  =  Σ 𝑖  ∈  ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) | 
						
							| 271 | 210 226 270 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝑃 ↑ 𝐴 ) )  =  Σ 𝑖  ∈  ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) | 
						
							| 272 | 208 271 | breqtrrd | ⊢ ( 𝜑  →  if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ ,  1 ,  0 )  ≤  ( 𝐹 ‘ ( 𝑃 ↑ 𝐴 ) ) ) |