| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpvmasum.z |  |-  Z = ( Z/nZ ` N ) | 
						
							| 2 |  | rpvmasum.l |  |-  L = ( ZRHom ` Z ) | 
						
							| 3 |  | rpvmasum.a |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | rpvmasum2.g |  |-  G = ( DChr ` N ) | 
						
							| 5 |  | rpvmasum2.d |  |-  D = ( Base ` G ) | 
						
							| 6 |  | rpvmasum2.1 |  |-  .1. = ( 0g ` G ) | 
						
							| 7 |  | dchrisum0f.f |  |-  F = ( b e. NN |-> sum_ v e. { q e. NN | q || b } ( X ` ( L ` v ) ) ) | 
						
							| 8 |  | dchrisum0f.x |  |-  ( ph -> X e. D ) | 
						
							| 9 |  | dchrisum0flb.r |  |-  ( ph -> X : ( Base ` Z ) --> RR ) | 
						
							| 10 |  | dchrisum0flblem1.1 |  |-  ( ph -> P e. Prime ) | 
						
							| 11 |  | dchrisum0flblem1.2 |  |-  ( ph -> A e. NN0 ) | 
						
							| 12 |  | 1red |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> 1 e. RR ) | 
						
							| 13 |  | 0red |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) /\ -. ( sqrt ` ( P ^ A ) ) e. NN ) -> 0 e. RR ) | 
						
							| 14 | 12 13 | ifclda |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) e. RR ) | 
						
							| 15 |  | 1red |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> 1 e. RR ) | 
						
							| 16 |  | fzfid |  |-  ( ph -> ( 0 ... A ) e. Fin ) | 
						
							| 17 | 3 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 18 |  | eqid |  |-  ( Base ` Z ) = ( Base ` Z ) | 
						
							| 19 | 1 18 2 | znzrhfo |  |-  ( N e. NN0 -> L : ZZ -onto-> ( Base ` Z ) ) | 
						
							| 20 |  | fof |  |-  ( L : ZZ -onto-> ( Base ` Z ) -> L : ZZ --> ( Base ` Z ) ) | 
						
							| 21 | 17 19 20 | 3syl |  |-  ( ph -> L : ZZ --> ( Base ` Z ) ) | 
						
							| 22 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 23 | 10 22 | syl |  |-  ( ph -> P e. ZZ ) | 
						
							| 24 | 21 23 | ffvelcdmd |  |-  ( ph -> ( L ` P ) e. ( Base ` Z ) ) | 
						
							| 25 | 9 24 | ffvelcdmd |  |-  ( ph -> ( X ` ( L ` P ) ) e. RR ) | 
						
							| 26 |  | elfznn0 |  |-  ( i e. ( 0 ... A ) -> i e. NN0 ) | 
						
							| 27 |  | reexpcl |  |-  ( ( ( X ` ( L ` P ) ) e. RR /\ i e. NN0 ) -> ( ( X ` ( L ` P ) ) ^ i ) e. RR ) | 
						
							| 28 | 25 26 27 | syl2an |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( X ` ( L ` P ) ) ^ i ) e. RR ) | 
						
							| 29 | 16 28 | fsumrecl |  |-  ( ph -> sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) e. RR ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) e. RR ) | 
						
							| 31 |  | breq1 |  |-  ( 1 = if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) -> ( 1 <_ 1 <-> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ 1 ) ) | 
						
							| 32 |  | breq1 |  |-  ( 0 = if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) -> ( 0 <_ 1 <-> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ 1 ) ) | 
						
							| 33 |  | 1le1 |  |-  1 <_ 1 | 
						
							| 34 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 35 | 31 32 33 34 | keephyp |  |-  if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ 1 | 
						
							| 36 | 35 | a1i |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ 1 ) | 
						
							| 37 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 38 | 11 37 | eleqtrdi |  |-  ( ph -> A e. ( ZZ>= ` 0 ) ) | 
						
							| 39 |  | fzn0 |  |-  ( ( 0 ... A ) =/= (/) <-> A e. ( ZZ>= ` 0 ) ) | 
						
							| 40 | 38 39 | sylibr |  |-  ( ph -> ( 0 ... A ) =/= (/) ) | 
						
							| 41 |  | hashnncl |  |-  ( ( 0 ... A ) e. Fin -> ( ( # ` ( 0 ... A ) ) e. NN <-> ( 0 ... A ) =/= (/) ) ) | 
						
							| 42 | 16 41 | syl |  |-  ( ph -> ( ( # ` ( 0 ... A ) ) e. NN <-> ( 0 ... A ) =/= (/) ) ) | 
						
							| 43 | 40 42 | mpbird |  |-  ( ph -> ( # ` ( 0 ... A ) ) e. NN ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> ( # ` ( 0 ... A ) ) e. NN ) | 
						
							| 45 | 44 | nnge1d |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> 1 <_ ( # ` ( 0 ... A ) ) ) | 
						
							| 46 |  | simpr |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> ( X ` ( L ` P ) ) = 1 ) | 
						
							| 47 | 46 | oveq1d |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> ( ( X ` ( L ` P ) ) ^ i ) = ( 1 ^ i ) ) | 
						
							| 48 |  | elfzelz |  |-  ( i e. ( 0 ... A ) -> i e. ZZ ) | 
						
							| 49 |  | 1exp |  |-  ( i e. ZZ -> ( 1 ^ i ) = 1 ) | 
						
							| 50 | 48 49 | syl |  |-  ( i e. ( 0 ... A ) -> ( 1 ^ i ) = 1 ) | 
						
							| 51 | 47 50 | sylan9eq |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) /\ i e. ( 0 ... A ) ) -> ( ( X ` ( L ` P ) ) ^ i ) = 1 ) | 
						
							| 52 | 51 | sumeq2dv |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) = sum_ i e. ( 0 ... A ) 1 ) | 
						
							| 53 |  | fzfid |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> ( 0 ... A ) e. Fin ) | 
						
							| 54 |  | ax-1cn |  |-  1 e. CC | 
						
							| 55 |  | fsumconst |  |-  ( ( ( 0 ... A ) e. Fin /\ 1 e. CC ) -> sum_ i e. ( 0 ... A ) 1 = ( ( # ` ( 0 ... A ) ) x. 1 ) ) | 
						
							| 56 | 53 54 55 | sylancl |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> sum_ i e. ( 0 ... A ) 1 = ( ( # ` ( 0 ... A ) ) x. 1 ) ) | 
						
							| 57 | 44 | nncnd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> ( # ` ( 0 ... A ) ) e. CC ) | 
						
							| 58 | 57 | mulridd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> ( ( # ` ( 0 ... A ) ) x. 1 ) = ( # ` ( 0 ... A ) ) ) | 
						
							| 59 | 52 56 58 | 3eqtrd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) = ( # ` ( 0 ... A ) ) ) | 
						
							| 60 | 45 59 | breqtrrd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> 1 <_ sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) ) | 
						
							| 61 | 14 15 30 36 60 | letrd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) = 1 ) -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) ) | 
						
							| 62 |  | oveq1 |  |-  ( 1 = if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) -> ( 1 x. ( 1 - ( X ` ( L ` P ) ) ) ) = ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) x. ( 1 - ( X ` ( L ` P ) ) ) ) ) | 
						
							| 63 | 62 | breq1d |  |-  ( 1 = if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) -> ( ( 1 x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) <-> ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) ) | 
						
							| 64 |  | oveq1 |  |-  ( 0 = if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) -> ( 0 x. ( 1 - ( X ` ( L ` P ) ) ) ) = ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) x. ( 1 - ( X ` ( L ` P ) ) ) ) ) | 
						
							| 65 | 64 | breq1d |  |-  ( 0 = if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) -> ( ( 0 x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) <-> ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) ) | 
						
							| 66 |  | 1re |  |-  1 e. RR | 
						
							| 67 | 25 | adantr |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( X ` ( L ` P ) ) e. RR ) | 
						
							| 68 |  | resubcl |  |-  ( ( 1 e. RR /\ ( X ` ( L ` P ) ) e. RR ) -> ( 1 - ( X ` ( L ` P ) ) ) e. RR ) | 
						
							| 69 | 66 67 68 | sylancr |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( 1 - ( X ` ( L ` P ) ) ) e. RR ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 1 - ( X ` ( L ` P ) ) ) e. RR ) | 
						
							| 71 | 70 | leidd |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 1 - ( X ` ( L ` P ) ) ) <_ ( 1 - ( X ` ( L ` P ) ) ) ) | 
						
							| 72 | 69 | recnd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( 1 - ( X ` ( L ` P ) ) ) e. CC ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 1 - ( X ` ( L ` P ) ) ) e. CC ) | 
						
							| 74 | 73 | mullidd |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 1 x. ( 1 - ( X ` ( L ` P ) ) ) ) = ( 1 - ( X ` ( L ` P ) ) ) ) | 
						
							| 75 |  | nn0p1nn |  |-  ( A e. NN0 -> ( A + 1 ) e. NN ) | 
						
							| 76 | 11 75 | syl |  |-  ( ph -> ( A + 1 ) e. NN ) | 
						
							| 77 | 76 | ad3antrrr |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) = 0 ) -> ( A + 1 ) e. NN ) | 
						
							| 78 | 77 | 0expd |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) = 0 ) -> ( 0 ^ ( A + 1 ) ) = 0 ) | 
						
							| 79 |  | simpr |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) = 0 ) -> ( X ` ( L ` P ) ) = 0 ) | 
						
							| 80 | 79 | oveq1d |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) = 0 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) = ( 0 ^ ( A + 1 ) ) ) | 
						
							| 81 | 78 80 79 | 3eqtr4d |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) = 0 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) = ( X ` ( L ` P ) ) ) | 
						
							| 82 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 83 | 11 | ad2antrr |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> A e. NN0 ) | 
						
							| 84 |  | expp1 |  |-  ( ( -u 1 e. CC /\ A e. NN0 ) -> ( -u 1 ^ ( A + 1 ) ) = ( ( -u 1 ^ A ) x. -u 1 ) ) | 
						
							| 85 | 82 83 84 | sylancr |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( -u 1 ^ ( A + 1 ) ) = ( ( -u 1 ^ A ) x. -u 1 ) ) | 
						
							| 86 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 87 | 10 86 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 88 | 87 11 | nnexpcld |  |-  ( ph -> ( P ^ A ) e. NN ) | 
						
							| 89 | 88 | nncnd |  |-  ( ph -> ( P ^ A ) e. CC ) | 
						
							| 90 | 89 | ad2antrr |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( P ^ A ) e. CC ) | 
						
							| 91 | 90 | sqsqrtd |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( ( sqrt ` ( P ^ A ) ) ^ 2 ) = ( P ^ A ) ) | 
						
							| 92 | 91 | oveq2d |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( P pCnt ( ( sqrt ` ( P ^ A ) ) ^ 2 ) ) = ( P pCnt ( P ^ A ) ) ) | 
						
							| 93 | 10 | ad2antrr |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> P e. Prime ) | 
						
							| 94 |  | nnq |  |-  ( ( sqrt ` ( P ^ A ) ) e. NN -> ( sqrt ` ( P ^ A ) ) e. QQ ) | 
						
							| 95 | 94 | adantl |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( sqrt ` ( P ^ A ) ) e. QQ ) | 
						
							| 96 |  | nnne0 |  |-  ( ( sqrt ` ( P ^ A ) ) e. NN -> ( sqrt ` ( P ^ A ) ) =/= 0 ) | 
						
							| 97 | 96 | adantl |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( sqrt ` ( P ^ A ) ) =/= 0 ) | 
						
							| 98 |  | 2z |  |-  2 e. ZZ | 
						
							| 99 | 98 | a1i |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> 2 e. ZZ ) | 
						
							| 100 |  | pcexp |  |-  ( ( P e. Prime /\ ( ( sqrt ` ( P ^ A ) ) e. QQ /\ ( sqrt ` ( P ^ A ) ) =/= 0 ) /\ 2 e. ZZ ) -> ( P pCnt ( ( sqrt ` ( P ^ A ) ) ^ 2 ) ) = ( 2 x. ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) ) | 
						
							| 101 | 93 95 97 99 100 | syl121anc |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( P pCnt ( ( sqrt ` ( P ^ A ) ) ^ 2 ) ) = ( 2 x. ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) ) | 
						
							| 102 | 83 | nn0zd |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> A e. ZZ ) | 
						
							| 103 |  | pcid |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( P pCnt ( P ^ A ) ) = A ) | 
						
							| 104 | 93 102 103 | syl2anc |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( P pCnt ( P ^ A ) ) = A ) | 
						
							| 105 | 92 101 104 | 3eqtr3rd |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> A = ( 2 x. ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) ) | 
						
							| 106 | 105 | oveq2d |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( -u 1 ^ A ) = ( -u 1 ^ ( 2 x. ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) ) ) | 
						
							| 107 | 82 | a1i |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> -u 1 e. CC ) | 
						
							| 108 |  | simpr |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( sqrt ` ( P ^ A ) ) e. NN ) | 
						
							| 109 | 93 108 | pccld |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( P pCnt ( sqrt ` ( P ^ A ) ) ) e. NN0 ) | 
						
							| 110 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 111 | 110 | a1i |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> 2 e. NN0 ) | 
						
							| 112 | 107 109 111 | expmuld |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( -u 1 ^ ( 2 x. ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) ) = ( ( -u 1 ^ 2 ) ^ ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) ) | 
						
							| 113 |  | neg1sqe1 |  |-  ( -u 1 ^ 2 ) = 1 | 
						
							| 114 | 113 | oveq1i |  |-  ( ( -u 1 ^ 2 ) ^ ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) = ( 1 ^ ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) | 
						
							| 115 | 109 | nn0zd |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( P pCnt ( sqrt ` ( P ^ A ) ) ) e. ZZ ) | 
						
							| 116 |  | 1exp |  |-  ( ( P pCnt ( sqrt ` ( P ^ A ) ) ) e. ZZ -> ( 1 ^ ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) = 1 ) | 
						
							| 117 | 115 116 | syl |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 1 ^ ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) = 1 ) | 
						
							| 118 | 114 117 | eqtrid |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( ( -u 1 ^ 2 ) ^ ( P pCnt ( sqrt ` ( P ^ A ) ) ) ) = 1 ) | 
						
							| 119 | 106 112 118 | 3eqtrd |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( -u 1 ^ A ) = 1 ) | 
						
							| 120 | 119 | oveq1d |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( ( -u 1 ^ A ) x. -u 1 ) = ( 1 x. -u 1 ) ) | 
						
							| 121 | 82 | mullidi |  |-  ( 1 x. -u 1 ) = -u 1 | 
						
							| 122 | 120 121 | eqtrdi |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( ( -u 1 ^ A ) x. -u 1 ) = -u 1 ) | 
						
							| 123 | 85 122 | eqtrd |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( -u 1 ^ ( A + 1 ) ) = -u 1 ) | 
						
							| 124 | 123 | adantr |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( -u 1 ^ ( A + 1 ) ) = -u 1 ) | 
						
							| 125 | 25 | recnd |  |-  ( ph -> ( X ` ( L ` P ) ) e. CC ) | 
						
							| 126 | 125 | adantr |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( X ` ( L ` P ) ) e. CC ) | 
						
							| 127 | 126 | ad2antrr |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( X ` ( L ` P ) ) e. CC ) | 
						
							| 128 | 127 | negnegd |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> -u -u ( X ` ( L ` P ) ) = ( X ` ( L ` P ) ) ) | 
						
							| 129 |  | simpr |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( X ` ( L ` P ) ) =/= 1 ) | 
						
							| 130 | 129 | ad2antrr |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( X ` ( L ` P ) ) =/= 1 ) | 
						
							| 131 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> X e. D ) | 
						
							| 132 |  | eqid |  |-  ( Unit ` Z ) = ( Unit ` Z ) | 
						
							| 133 | 4 1 5 18 132 8 24 | dchrn0 |  |-  ( ph -> ( ( X ` ( L ` P ) ) =/= 0 <-> ( L ` P ) e. ( Unit ` Z ) ) ) | 
						
							| 134 | 133 | ad2antrr |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( ( X ` ( L ` P ) ) =/= 0 <-> ( L ` P ) e. ( Unit ` Z ) ) ) | 
						
							| 135 | 134 | biimpa |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( L ` P ) e. ( Unit ` Z ) ) | 
						
							| 136 | 4 5 131 1 132 135 | dchrabs |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( abs ` ( X ` ( L ` P ) ) ) = 1 ) | 
						
							| 137 |  | eqeq1 |  |-  ( ( abs ` ( X ` ( L ` P ) ) ) = ( X ` ( L ` P ) ) -> ( ( abs ` ( X ` ( L ` P ) ) ) = 1 <-> ( X ` ( L ` P ) ) = 1 ) ) | 
						
							| 138 | 136 137 | syl5ibcom |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( ( abs ` ( X ` ( L ` P ) ) ) = ( X ` ( L ` P ) ) -> ( X ` ( L ` P ) ) = 1 ) ) | 
						
							| 139 | 138 | necon3ad |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( ( X ` ( L ` P ) ) =/= 1 -> -. ( abs ` ( X ` ( L ` P ) ) ) = ( X ` ( L ` P ) ) ) ) | 
						
							| 140 | 130 139 | mpd |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> -. ( abs ` ( X ` ( L ` P ) ) ) = ( X ` ( L ` P ) ) ) | 
						
							| 141 | 67 | ad2antrr |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( X ` ( L ` P ) ) e. RR ) | 
						
							| 142 | 141 | absord |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( ( abs ` ( X ` ( L ` P ) ) ) = ( X ` ( L ` P ) ) \/ ( abs ` ( X ` ( L ` P ) ) ) = -u ( X ` ( L ` P ) ) ) ) | 
						
							| 143 | 142 | ord |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( -. ( abs ` ( X ` ( L ` P ) ) ) = ( X ` ( L ` P ) ) -> ( abs ` ( X ` ( L ` P ) ) ) = -u ( X ` ( L ` P ) ) ) ) | 
						
							| 144 | 140 143 | mpd |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( abs ` ( X ` ( L ` P ) ) ) = -u ( X ` ( L ` P ) ) ) | 
						
							| 145 | 144 136 | eqtr3d |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> -u ( X ` ( L ` P ) ) = 1 ) | 
						
							| 146 | 145 | negeqd |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> -u -u ( X ` ( L ` P ) ) = -u 1 ) | 
						
							| 147 | 128 146 | eqtr3d |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( X ` ( L ` P ) ) = -u 1 ) | 
						
							| 148 | 147 | oveq1d |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) = ( -u 1 ^ ( A + 1 ) ) ) | 
						
							| 149 | 124 148 147 | 3eqtr4d |  |-  ( ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) /\ ( X ` ( L ` P ) ) =/= 0 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) = ( X ` ( L ` P ) ) ) | 
						
							| 150 | 81 149 | pm2.61dane |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) = ( X ` ( L ` P ) ) ) | 
						
							| 151 | 150 | oveq2d |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) = ( 1 - ( X ` ( L ` P ) ) ) ) | 
						
							| 152 | 71 74 151 | 3brtr4d |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 1 x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) | 
						
							| 153 | 72 | mul02d |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( 0 x. ( 1 - ( X ` ( L ` P ) ) ) ) = 0 ) | 
						
							| 154 |  | peano2nn0 |  |-  ( A e. NN0 -> ( A + 1 ) e. NN0 ) | 
						
							| 155 | 11 154 | syl |  |-  ( ph -> ( A + 1 ) e. NN0 ) | 
						
							| 156 | 25 155 | reexpcld |  |-  ( ph -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) e. RR ) | 
						
							| 157 | 156 | adantr |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) e. RR ) | 
						
							| 158 | 157 | recnd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) e. CC ) | 
						
							| 159 | 158 | abscld |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( abs ` ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) e. RR ) | 
						
							| 160 |  | 1red |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> 1 e. RR ) | 
						
							| 161 | 157 | leabsd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) <_ ( abs ` ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) | 
						
							| 162 | 155 | adantr |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( A + 1 ) e. NN0 ) | 
						
							| 163 | 126 162 | absexpd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( abs ` ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) = ( ( abs ` ( X ` ( L ` P ) ) ) ^ ( A + 1 ) ) ) | 
						
							| 164 | 126 | abscld |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( abs ` ( X ` ( L ` P ) ) ) e. RR ) | 
						
							| 165 | 126 | absge0d |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> 0 <_ ( abs ` ( X ` ( L ` P ) ) ) ) | 
						
							| 166 | 4 5 1 18 8 24 | dchrabs2 |  |-  ( ph -> ( abs ` ( X ` ( L ` P ) ) ) <_ 1 ) | 
						
							| 167 | 166 | adantr |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( abs ` ( X ` ( L ` P ) ) ) <_ 1 ) | 
						
							| 168 |  | exple1 |  |-  ( ( ( ( abs ` ( X ` ( L ` P ) ) ) e. RR /\ 0 <_ ( abs ` ( X ` ( L ` P ) ) ) /\ ( abs ` ( X ` ( L ` P ) ) ) <_ 1 ) /\ ( A + 1 ) e. NN0 ) -> ( ( abs ` ( X ` ( L ` P ) ) ) ^ ( A + 1 ) ) <_ 1 ) | 
						
							| 169 | 164 165 167 162 168 | syl31anc |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( abs ` ( X ` ( L ` P ) ) ) ^ ( A + 1 ) ) <_ 1 ) | 
						
							| 170 | 163 169 | eqbrtrd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( abs ` ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) <_ 1 ) | 
						
							| 171 | 157 159 160 161 170 | letrd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) <_ 1 ) | 
						
							| 172 |  | subge0 |  |-  ( ( 1 e. RR /\ ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) e. RR ) -> ( 0 <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) <-> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) <_ 1 ) ) | 
						
							| 173 | 66 157 172 | sylancr |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( 0 <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) <-> ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) <_ 1 ) ) | 
						
							| 174 | 171 173 | mpbird |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> 0 <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) | 
						
							| 175 | 153 174 | eqbrtrd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( 0 x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) | 
						
							| 176 | 175 | adantr |  |-  ( ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) /\ -. ( sqrt ` ( P ^ A ) ) e. NN ) -> ( 0 x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) | 
						
							| 177 | 63 65 152 176 | ifbothda |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) | 
						
							| 178 |  | 0re |  |-  0 e. RR | 
						
							| 179 | 66 178 | ifcli |  |-  if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) e. RR | 
						
							| 180 | 179 | a1i |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) e. RR ) | 
						
							| 181 |  | resubcl |  |-  ( ( 1 e. RR /\ ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) e. RR ) -> ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) e. RR ) | 
						
							| 182 | 66 157 181 | sylancr |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) e. RR ) | 
						
							| 183 | 67 | leabsd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( X ` ( L ` P ) ) <_ ( abs ` ( X ` ( L ` P ) ) ) ) | 
						
							| 184 | 67 164 160 183 167 | letrd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( X ` ( L ` P ) ) <_ 1 ) | 
						
							| 185 | 129 | necomd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> 1 =/= ( X ` ( L ` P ) ) ) | 
						
							| 186 | 67 160 184 185 | leneltd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( X ` ( L ` P ) ) < 1 ) | 
						
							| 187 |  | posdif |  |-  ( ( ( X ` ( L ` P ) ) e. RR /\ 1 e. RR ) -> ( ( X ` ( L ` P ) ) < 1 <-> 0 < ( 1 - ( X ` ( L ` P ) ) ) ) ) | 
						
							| 188 | 67 66 187 | sylancl |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( X ` ( L ` P ) ) < 1 <-> 0 < ( 1 - ( X ` ( L ` P ) ) ) ) ) | 
						
							| 189 | 186 188 | mpbid |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> 0 < ( 1 - ( X ` ( L ` P ) ) ) ) | 
						
							| 190 |  | lemuldiv |  |-  ( ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) e. RR /\ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) e. RR /\ ( ( 1 - ( X ` ( L ` P ) ) ) e. RR /\ 0 < ( 1 - ( X ` ( L ` P ) ) ) ) ) -> ( ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) <-> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ ( ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) / ( 1 - ( X ` ( L ` P ) ) ) ) ) ) | 
						
							| 191 | 180 182 69 189 190 | syl112anc |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) x. ( 1 - ( X ` ( L ` P ) ) ) ) <_ ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) <-> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ ( ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) / ( 1 - ( X ` ( L ` P ) ) ) ) ) ) | 
						
							| 192 | 177 191 | mpbid |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ ( ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) / ( 1 - ( X ` ( L ` P ) ) ) ) ) | 
						
							| 193 | 11 | nn0zd |  |-  ( ph -> A e. ZZ ) | 
						
							| 194 |  | fzval3 |  |-  ( A e. ZZ -> ( 0 ... A ) = ( 0 ..^ ( A + 1 ) ) ) | 
						
							| 195 | 193 194 | syl |  |-  ( ph -> ( 0 ... A ) = ( 0 ..^ ( A + 1 ) ) ) | 
						
							| 196 | 195 | adantr |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( 0 ... A ) = ( 0 ..^ ( A + 1 ) ) ) | 
						
							| 197 | 196 | sumeq1d |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) = sum_ i e. ( 0 ..^ ( A + 1 ) ) ( ( X ` ( L ` P ) ) ^ i ) ) | 
						
							| 198 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 199 | 198 | a1i |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> 0 e. NN0 ) | 
						
							| 200 | 155 37 | eleqtrdi |  |-  ( ph -> ( A + 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 201 | 200 | adantr |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( A + 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 202 | 126 129 199 201 | geoserg |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> sum_ i e. ( 0 ..^ ( A + 1 ) ) ( ( X ` ( L ` P ) ) ^ i ) = ( ( ( ( X ` ( L ` P ) ) ^ 0 ) - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) / ( 1 - ( X ` ( L ` P ) ) ) ) ) | 
						
							| 203 | 126 | exp0d |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( X ` ( L ` P ) ) ^ 0 ) = 1 ) | 
						
							| 204 | 203 | oveq1d |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( ( X ` ( L ` P ) ) ^ 0 ) - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) = ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) ) | 
						
							| 205 | 204 | oveq1d |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> ( ( ( ( X ` ( L ` P ) ) ^ 0 ) - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) / ( 1 - ( X ` ( L ` P ) ) ) ) = ( ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) / ( 1 - ( X ` ( L ` P ) ) ) ) ) | 
						
							| 206 | 197 202 205 | 3eqtrd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) = ( ( 1 - ( ( X ` ( L ` P ) ) ^ ( A + 1 ) ) ) / ( 1 - ( X ` ( L ` P ) ) ) ) ) | 
						
							| 207 | 192 206 | breqtrrd |  |-  ( ( ph /\ ( X ` ( L ` P ) ) =/= 1 ) -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) ) | 
						
							| 208 | 61 207 | pm2.61dane |  |-  ( ph -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) ) | 
						
							| 209 | 1 2 3 4 5 6 7 | dchrisum0fval |  |-  ( ( P ^ A ) e. NN -> ( F ` ( P ^ A ) ) = sum_ k e. { q e. NN | q || ( P ^ A ) } ( X ` ( L ` k ) ) ) | 
						
							| 210 | 88 209 | syl |  |-  ( ph -> ( F ` ( P ^ A ) ) = sum_ k e. { q e. NN | q || ( P ^ A ) } ( X ` ( L ` k ) ) ) | 
						
							| 211 |  | 2fveq3 |  |-  ( k = ( P ^ i ) -> ( X ` ( L ` k ) ) = ( X ` ( L ` ( P ^ i ) ) ) ) | 
						
							| 212 |  | eqid |  |-  ( b e. ( 0 ... A ) |-> ( P ^ b ) ) = ( b e. ( 0 ... A ) |-> ( P ^ b ) ) | 
						
							| 213 | 212 | dvdsppwf1o |  |-  ( ( P e. Prime /\ A e. NN0 ) -> ( b e. ( 0 ... A ) |-> ( P ^ b ) ) : ( 0 ... A ) -1-1-onto-> { q e. NN | q || ( P ^ A ) } ) | 
						
							| 214 | 10 11 213 | syl2anc |  |-  ( ph -> ( b e. ( 0 ... A ) |-> ( P ^ b ) ) : ( 0 ... A ) -1-1-onto-> { q e. NN | q || ( P ^ A ) } ) | 
						
							| 215 |  | oveq2 |  |-  ( b = i -> ( P ^ b ) = ( P ^ i ) ) | 
						
							| 216 |  | ovex |  |-  ( P ^ b ) e. _V | 
						
							| 217 | 215 212 216 | fvmpt3i |  |-  ( i e. ( 0 ... A ) -> ( ( b e. ( 0 ... A ) |-> ( P ^ b ) ) ` i ) = ( P ^ i ) ) | 
						
							| 218 | 217 | adantl |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( b e. ( 0 ... A ) |-> ( P ^ b ) ) ` i ) = ( P ^ i ) ) | 
						
							| 219 | 9 | adantr |  |-  ( ( ph /\ k e. { q e. NN | q || ( P ^ A ) } ) -> X : ( Base ` Z ) --> RR ) | 
						
							| 220 |  | elrabi |  |-  ( k e. { q e. NN | q || ( P ^ A ) } -> k e. NN ) | 
						
							| 221 | 220 | nnzd |  |-  ( k e. { q e. NN | q || ( P ^ A ) } -> k e. ZZ ) | 
						
							| 222 |  | ffvelcdm |  |-  ( ( L : ZZ --> ( Base ` Z ) /\ k e. ZZ ) -> ( L ` k ) e. ( Base ` Z ) ) | 
						
							| 223 | 21 221 222 | syl2an |  |-  ( ( ph /\ k e. { q e. NN | q || ( P ^ A ) } ) -> ( L ` k ) e. ( Base ` Z ) ) | 
						
							| 224 | 219 223 | ffvelcdmd |  |-  ( ( ph /\ k e. { q e. NN | q || ( P ^ A ) } ) -> ( X ` ( L ` k ) ) e. RR ) | 
						
							| 225 | 224 | recnd |  |-  ( ( ph /\ k e. { q e. NN | q || ( P ^ A ) } ) -> ( X ` ( L ` k ) ) e. CC ) | 
						
							| 226 | 211 16 214 218 225 | fsumf1o |  |-  ( ph -> sum_ k e. { q e. NN | q || ( P ^ A ) } ( X ` ( L ` k ) ) = sum_ i e. ( 0 ... A ) ( X ` ( L ` ( P ^ i ) ) ) ) | 
						
							| 227 |  | zsubrg |  |-  ZZ e. ( SubRing ` CCfld ) | 
						
							| 228 |  | eqid |  |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) | 
						
							| 229 | 228 | subrgsubm |  |-  ( ZZ e. ( SubRing ` CCfld ) -> ZZ e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) | 
						
							| 230 | 227 229 | mp1i |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ZZ e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) | 
						
							| 231 | 26 | adantl |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> i e. NN0 ) | 
						
							| 232 | 23 | adantr |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> P e. ZZ ) | 
						
							| 233 |  | eqid |  |-  ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) | 
						
							| 234 |  | zringmpg |  |-  ( ( mulGrp ` CCfld ) |`s ZZ ) = ( mulGrp ` ZZring ) | 
						
							| 235 | 234 | eqcomi |  |-  ( mulGrp ` ZZring ) = ( ( mulGrp ` CCfld ) |`s ZZ ) | 
						
							| 236 |  | eqid |  |-  ( .g ` ( mulGrp ` ZZring ) ) = ( .g ` ( mulGrp ` ZZring ) ) | 
						
							| 237 | 233 235 236 | submmulg |  |-  ( ( ZZ e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ i e. NN0 /\ P e. ZZ ) -> ( i ( .g ` ( mulGrp ` CCfld ) ) P ) = ( i ( .g ` ( mulGrp ` ZZring ) ) P ) ) | 
						
							| 238 | 230 231 232 237 | syl3anc |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( i ( .g ` ( mulGrp ` CCfld ) ) P ) = ( i ( .g ` ( mulGrp ` ZZring ) ) P ) ) | 
						
							| 239 | 87 | nncnd |  |-  ( ph -> P e. CC ) | 
						
							| 240 |  | cnfldexp |  |-  ( ( P e. CC /\ i e. NN0 ) -> ( i ( .g ` ( mulGrp ` CCfld ) ) P ) = ( P ^ i ) ) | 
						
							| 241 | 239 26 240 | syl2an |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( i ( .g ` ( mulGrp ` CCfld ) ) P ) = ( P ^ i ) ) | 
						
							| 242 | 238 241 | eqtr3d |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( i ( .g ` ( mulGrp ` ZZring ) ) P ) = ( P ^ i ) ) | 
						
							| 243 | 242 | fveq2d |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( L ` ( i ( .g ` ( mulGrp ` ZZring ) ) P ) ) = ( L ` ( P ^ i ) ) ) | 
						
							| 244 | 1 | zncrng |  |-  ( N e. NN0 -> Z e. CRing ) | 
						
							| 245 |  | crngring |  |-  ( Z e. CRing -> Z e. Ring ) | 
						
							| 246 | 17 244 245 | 3syl |  |-  ( ph -> Z e. Ring ) | 
						
							| 247 | 2 | zrhrhm |  |-  ( Z e. Ring -> L e. ( ZZring RingHom Z ) ) | 
						
							| 248 |  | eqid |  |-  ( mulGrp ` ZZring ) = ( mulGrp ` ZZring ) | 
						
							| 249 |  | eqid |  |-  ( mulGrp ` Z ) = ( mulGrp ` Z ) | 
						
							| 250 | 248 249 | rhmmhm |  |-  ( L e. ( ZZring RingHom Z ) -> L e. ( ( mulGrp ` ZZring ) MndHom ( mulGrp ` Z ) ) ) | 
						
							| 251 | 246 247 250 | 3syl |  |-  ( ph -> L e. ( ( mulGrp ` ZZring ) MndHom ( mulGrp ` Z ) ) ) | 
						
							| 252 | 251 | adantr |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> L e. ( ( mulGrp ` ZZring ) MndHom ( mulGrp ` Z ) ) ) | 
						
							| 253 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 254 | 248 253 | mgpbas |  |-  ZZ = ( Base ` ( mulGrp ` ZZring ) ) | 
						
							| 255 |  | eqid |  |-  ( .g ` ( mulGrp ` Z ) ) = ( .g ` ( mulGrp ` Z ) ) | 
						
							| 256 | 254 236 255 | mhmmulg |  |-  ( ( L e. ( ( mulGrp ` ZZring ) MndHom ( mulGrp ` Z ) ) /\ i e. NN0 /\ P e. ZZ ) -> ( L ` ( i ( .g ` ( mulGrp ` ZZring ) ) P ) ) = ( i ( .g ` ( mulGrp ` Z ) ) ( L ` P ) ) ) | 
						
							| 257 | 252 231 232 256 | syl3anc |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( L ` ( i ( .g ` ( mulGrp ` ZZring ) ) P ) ) = ( i ( .g ` ( mulGrp ` Z ) ) ( L ` P ) ) ) | 
						
							| 258 | 243 257 | eqtr3d |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( L ` ( P ^ i ) ) = ( i ( .g ` ( mulGrp ` Z ) ) ( L ` P ) ) ) | 
						
							| 259 | 258 | fveq2d |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( X ` ( L ` ( P ^ i ) ) ) = ( X ` ( i ( .g ` ( mulGrp ` Z ) ) ( L ` P ) ) ) ) | 
						
							| 260 | 4 1 5 | dchrmhm |  |-  D C_ ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) | 
						
							| 261 | 260 8 | sselid |  |-  ( ph -> X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) | 
						
							| 262 | 261 | adantr |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) | 
						
							| 263 | 24 | adantr |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( L ` P ) e. ( Base ` Z ) ) | 
						
							| 264 | 249 18 | mgpbas |  |-  ( Base ` Z ) = ( Base ` ( mulGrp ` Z ) ) | 
						
							| 265 | 264 255 233 | mhmmulg |  |-  ( ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ i e. NN0 /\ ( L ` P ) e. ( Base ` Z ) ) -> ( X ` ( i ( .g ` ( mulGrp ` Z ) ) ( L ` P ) ) ) = ( i ( .g ` ( mulGrp ` CCfld ) ) ( X ` ( L ` P ) ) ) ) | 
						
							| 266 | 262 231 263 265 | syl3anc |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( X ` ( i ( .g ` ( mulGrp ` Z ) ) ( L ` P ) ) ) = ( i ( .g ` ( mulGrp ` CCfld ) ) ( X ` ( L ` P ) ) ) ) | 
						
							| 267 |  | cnfldexp |  |-  ( ( ( X ` ( L ` P ) ) e. CC /\ i e. NN0 ) -> ( i ( .g ` ( mulGrp ` CCfld ) ) ( X ` ( L ` P ) ) ) = ( ( X ` ( L ` P ) ) ^ i ) ) | 
						
							| 268 | 125 26 267 | syl2an |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( i ( .g ` ( mulGrp ` CCfld ) ) ( X ` ( L ` P ) ) ) = ( ( X ` ( L ` P ) ) ^ i ) ) | 
						
							| 269 | 259 266 268 | 3eqtrd |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( X ` ( L ` ( P ^ i ) ) ) = ( ( X ` ( L ` P ) ) ^ i ) ) | 
						
							| 270 | 269 | sumeq2dv |  |-  ( ph -> sum_ i e. ( 0 ... A ) ( X ` ( L ` ( P ^ i ) ) ) = sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) ) | 
						
							| 271 | 210 226 270 | 3eqtrd |  |-  ( ph -> ( F ` ( P ^ A ) ) = sum_ i e. ( 0 ... A ) ( ( X ` ( L ` P ) ) ^ i ) ) | 
						
							| 272 | 208 271 | breqtrrd |  |-  ( ph -> if ( ( sqrt ` ( P ^ A ) ) e. NN , 1 , 0 ) <_ ( F ` ( P ^ A ) ) ) |