| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpvmasum.z |  |-  Z = ( Z/nZ ` N ) | 
						
							| 2 |  | rpvmasum.l |  |-  L = ( ZRHom ` Z ) | 
						
							| 3 |  | rpvmasum.a |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | rpvmasum2.g |  |-  G = ( DChr ` N ) | 
						
							| 5 |  | rpvmasum2.d |  |-  D = ( Base ` G ) | 
						
							| 6 |  | rpvmasum2.1 |  |-  .1. = ( 0g ` G ) | 
						
							| 7 |  | dchrisum0f.f |  |-  F = ( b e. NN |-> sum_ v e. { q e. NN | q || b } ( X ` ( L ` v ) ) ) | 
						
							| 8 |  | dchrisum0f.x |  |-  ( ph -> X e. D ) | 
						
							| 9 |  | dchrisum0flb.r |  |-  ( ph -> X : ( Base ` Z ) --> RR ) | 
						
							| 10 |  | dchrisum0flb.1 |  |-  ( ph -> A e. ( ZZ>= ` 2 ) ) | 
						
							| 11 |  | dchrisum0flb.2 |  |-  ( ph -> P e. Prime ) | 
						
							| 12 |  | dchrisum0flb.3 |  |-  ( ph -> P || A ) | 
						
							| 13 |  | dchrisum0flb.4 |  |-  ( ph -> A. y e. ( 1 ..^ A ) if ( ( sqrt ` y ) e. NN , 1 , 0 ) <_ ( F ` y ) ) | 
						
							| 14 |  | breq1 |  |-  ( 1 = if ( ( sqrt ` A ) e. NN , 1 , 0 ) -> ( 1 <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) <-> if ( ( sqrt ` A ) e. NN , 1 , 0 ) <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) ) | 
						
							| 15 |  | breq1 |  |-  ( 0 = if ( ( sqrt ` A ) e. NN , 1 , 0 ) -> ( 0 <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) <-> if ( ( sqrt ` A ) e. NN , 1 , 0 ) <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) ) | 
						
							| 16 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 17 | 11 | adantr |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> P e. Prime ) | 
						
							| 18 |  | nnq |  |-  ( ( sqrt ` A ) e. NN -> ( sqrt ` A ) e. QQ ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` A ) e. QQ ) | 
						
							| 20 |  | nnne0 |  |-  ( ( sqrt ` A ) e. NN -> ( sqrt ` A ) =/= 0 ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` A ) =/= 0 ) | 
						
							| 22 |  | 2z |  |-  2 e. ZZ | 
						
							| 23 | 22 | a1i |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> 2 e. ZZ ) | 
						
							| 24 |  | pcexp |  |-  ( ( P e. Prime /\ ( ( sqrt ` A ) e. QQ /\ ( sqrt ` A ) =/= 0 ) /\ 2 e. ZZ ) -> ( P pCnt ( ( sqrt ` A ) ^ 2 ) ) = ( 2 x. ( P pCnt ( sqrt ` A ) ) ) ) | 
						
							| 25 | 17 19 21 23 24 | syl121anc |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P pCnt ( ( sqrt ` A ) ^ 2 ) ) = ( 2 x. ( P pCnt ( sqrt ` A ) ) ) ) | 
						
							| 26 |  | eluz2nn |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. NN ) | 
						
							| 27 | 10 26 | syl |  |-  ( ph -> A e. NN ) | 
						
							| 28 | 27 | nncnd |  |-  ( ph -> A e. CC ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> A e. CC ) | 
						
							| 30 | 29 | sqsqrtd |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( ( sqrt ` A ) ^ 2 ) = A ) | 
						
							| 31 | 30 | oveq2d |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P pCnt ( ( sqrt ` A ) ^ 2 ) ) = ( P pCnt A ) ) | 
						
							| 32 |  | 2cnd |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> 2 e. CC ) | 
						
							| 33 |  | simpr |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` A ) e. NN ) | 
						
							| 34 | 17 33 | pccld |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P pCnt ( sqrt ` A ) ) e. NN0 ) | 
						
							| 35 | 34 | nn0cnd |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P pCnt ( sqrt ` A ) ) e. CC ) | 
						
							| 36 | 32 35 | mulcomd |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( 2 x. ( P pCnt ( sqrt ` A ) ) ) = ( ( P pCnt ( sqrt ` A ) ) x. 2 ) ) | 
						
							| 37 | 25 31 36 | 3eqtr3rd |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( ( P pCnt ( sqrt ` A ) ) x. 2 ) = ( P pCnt A ) ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P ^ ( ( P pCnt ( sqrt ` A ) ) x. 2 ) ) = ( P ^ ( P pCnt A ) ) ) | 
						
							| 39 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 40 | 17 39 | syl |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> P e. NN ) | 
						
							| 41 | 40 | nncnd |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> P e. CC ) | 
						
							| 42 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 43 | 42 | a1i |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> 2 e. NN0 ) | 
						
							| 44 | 41 43 34 | expmuld |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P ^ ( ( P pCnt ( sqrt ` A ) ) x. 2 ) ) = ( ( P ^ ( P pCnt ( sqrt ` A ) ) ) ^ 2 ) ) | 
						
							| 45 | 38 44 | eqtr3d |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P ^ ( P pCnt A ) ) = ( ( P ^ ( P pCnt ( sqrt ` A ) ) ) ^ 2 ) ) | 
						
							| 46 | 45 | fveq2d |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( P ^ ( P pCnt A ) ) ) = ( sqrt ` ( ( P ^ ( P pCnt ( sqrt ` A ) ) ) ^ 2 ) ) ) | 
						
							| 47 | 40 34 | nnexpcld |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P ^ ( P pCnt ( sqrt ` A ) ) ) e. NN ) | 
						
							| 48 | 47 | nnrpd |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P ^ ( P pCnt ( sqrt ` A ) ) ) e. RR+ ) | 
						
							| 49 | 48 | rprege0d |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( ( P ^ ( P pCnt ( sqrt ` A ) ) ) e. RR /\ 0 <_ ( P ^ ( P pCnt ( sqrt ` A ) ) ) ) ) | 
						
							| 50 |  | sqrtsq |  |-  ( ( ( P ^ ( P pCnt ( sqrt ` A ) ) ) e. RR /\ 0 <_ ( P ^ ( P pCnt ( sqrt ` A ) ) ) ) -> ( sqrt ` ( ( P ^ ( P pCnt ( sqrt ` A ) ) ) ^ 2 ) ) = ( P ^ ( P pCnt ( sqrt ` A ) ) ) ) | 
						
							| 51 | 49 50 | syl |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( ( P ^ ( P pCnt ( sqrt ` A ) ) ) ^ 2 ) ) = ( P ^ ( P pCnt ( sqrt ` A ) ) ) ) | 
						
							| 52 | 46 51 | eqtrd |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( P ^ ( P pCnt A ) ) ) = ( P ^ ( P pCnt ( sqrt ` A ) ) ) ) | 
						
							| 53 | 52 47 | eqeltrd |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN ) | 
						
							| 54 | 53 | iftrued |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) = 1 ) | 
						
							| 55 | 11 27 | pccld |  |-  ( ph -> ( P pCnt A ) e. NN0 ) | 
						
							| 56 | 1 2 3 4 5 6 7 8 9 11 55 | dchrisum0flblem1 |  |-  ( ph -> if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) <_ ( F ` ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) <_ ( F ` ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 58 | 54 57 | eqbrtrrd |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> 1 <_ ( F ` ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 59 |  | pcdvds |  |-  ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) || A ) | 
						
							| 60 | 11 27 59 | syl2anc |  |-  ( ph -> ( P ^ ( P pCnt A ) ) || A ) | 
						
							| 61 | 11 39 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 62 | 61 55 | nnexpcld |  |-  ( ph -> ( P ^ ( P pCnt A ) ) e. NN ) | 
						
							| 63 |  | nndivdvds |  |-  ( ( A e. NN /\ ( P ^ ( P pCnt A ) ) e. NN ) -> ( ( P ^ ( P pCnt A ) ) || A <-> ( A / ( P ^ ( P pCnt A ) ) ) e. NN ) ) | 
						
							| 64 | 27 62 63 | syl2anc |  |-  ( ph -> ( ( P ^ ( P pCnt A ) ) || A <-> ( A / ( P ^ ( P pCnt A ) ) ) e. NN ) ) | 
						
							| 65 | 60 64 | mpbid |  |-  ( ph -> ( A / ( P ^ ( P pCnt A ) ) ) e. NN ) | 
						
							| 66 | 65 | nnzd |  |-  ( ph -> ( A / ( P ^ ( P pCnt A ) ) ) e. ZZ ) | 
						
							| 67 | 66 | adantr |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( A / ( P ^ ( P pCnt A ) ) ) e. ZZ ) | 
						
							| 68 | 27 | adantr |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> A e. NN ) | 
						
							| 69 | 68 | nnrpd |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> A e. RR+ ) | 
						
							| 70 | 69 | rprege0d |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( A e. RR /\ 0 <_ A ) ) | 
						
							| 71 | 62 | adantr |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P ^ ( P pCnt A ) ) e. NN ) | 
						
							| 72 | 71 | nnrpd |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( P ^ ( P pCnt A ) ) e. RR+ ) | 
						
							| 73 |  | sqrtdiv |  |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( P ^ ( P pCnt A ) ) e. RR+ ) -> ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) = ( ( sqrt ` A ) / ( sqrt ` ( P ^ ( P pCnt A ) ) ) ) ) | 
						
							| 74 | 70 72 73 | syl2anc |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) = ( ( sqrt ` A ) / ( sqrt ` ( P ^ ( P pCnt A ) ) ) ) ) | 
						
							| 75 |  | nnz |  |-  ( ( sqrt ` A ) e. NN -> ( sqrt ` A ) e. ZZ ) | 
						
							| 76 |  | znq |  |-  ( ( ( sqrt ` A ) e. ZZ /\ ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN ) -> ( ( sqrt ` A ) / ( sqrt ` ( P ^ ( P pCnt A ) ) ) ) e. QQ ) | 
						
							| 77 | 75 53 76 | syl2an2 |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( ( sqrt ` A ) / ( sqrt ` ( P ^ ( P pCnt A ) ) ) ) e. QQ ) | 
						
							| 78 | 74 77 | eqeltrd |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. QQ ) | 
						
							| 79 |  | zsqrtelqelz |  |-  ( ( ( A / ( P ^ ( P pCnt A ) ) ) e. ZZ /\ ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. QQ ) -> ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. ZZ ) | 
						
							| 80 | 67 78 79 | syl2anc |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. ZZ ) | 
						
							| 81 | 65 | adantr |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( A / ( P ^ ( P pCnt A ) ) ) e. NN ) | 
						
							| 82 | 81 | nnrpd |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( A / ( P ^ ( P pCnt A ) ) ) e. RR+ ) | 
						
							| 83 | 82 | sqrtgt0d |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> 0 < ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) | 
						
							| 84 |  | elnnz |  |-  ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN <-> ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. ZZ /\ 0 < ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) | 
						
							| 85 | 80 83 84 | sylanbrc |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN ) | 
						
							| 86 | 85 | iftrued |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) = 1 ) | 
						
							| 87 |  | fveq2 |  |-  ( y = ( A / ( P ^ ( P pCnt A ) ) ) -> ( sqrt ` y ) = ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) | 
						
							| 88 | 87 | eleq1d |  |-  ( y = ( A / ( P ^ ( P pCnt A ) ) ) -> ( ( sqrt ` y ) e. NN <-> ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN ) ) | 
						
							| 89 | 88 | ifbid |  |-  ( y = ( A / ( P ^ ( P pCnt A ) ) ) -> if ( ( sqrt ` y ) e. NN , 1 , 0 ) = if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) ) | 
						
							| 90 |  | fveq2 |  |-  ( y = ( A / ( P ^ ( P pCnt A ) ) ) -> ( F ` y ) = ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) | 
						
							| 91 | 89 90 | breq12d |  |-  ( y = ( A / ( P ^ ( P pCnt A ) ) ) -> ( if ( ( sqrt ` y ) e. NN , 1 , 0 ) <_ ( F ` y ) <-> if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) <_ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) | 
						
							| 92 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 93 | 65 92 | eleqtrdi |  |-  ( ph -> ( A / ( P ^ ( P pCnt A ) ) ) e. ( ZZ>= ` 1 ) ) | 
						
							| 94 | 27 | nnzd |  |-  ( ph -> A e. ZZ ) | 
						
							| 95 | 61 | nnred |  |-  ( ph -> P e. RR ) | 
						
							| 96 |  | pcelnn |  |-  ( ( P e. Prime /\ A e. NN ) -> ( ( P pCnt A ) e. NN <-> P || A ) ) | 
						
							| 97 | 11 27 96 | syl2anc |  |-  ( ph -> ( ( P pCnt A ) e. NN <-> P || A ) ) | 
						
							| 98 | 12 97 | mpbird |  |-  ( ph -> ( P pCnt A ) e. NN ) | 
						
							| 99 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 100 |  | eluz2gt1 |  |-  ( P e. ( ZZ>= ` 2 ) -> 1 < P ) | 
						
							| 101 | 11 99 100 | 3syl |  |-  ( ph -> 1 < P ) | 
						
							| 102 |  | expgt1 |  |-  ( ( P e. RR /\ ( P pCnt A ) e. NN /\ 1 < P ) -> 1 < ( P ^ ( P pCnt A ) ) ) | 
						
							| 103 | 95 98 101 102 | syl3anc |  |-  ( ph -> 1 < ( P ^ ( P pCnt A ) ) ) | 
						
							| 104 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 105 |  | 0lt1 |  |-  0 < 1 | 
						
							| 106 | 105 | a1i |  |-  ( ph -> 0 < 1 ) | 
						
							| 107 | 62 | nnred |  |-  ( ph -> ( P ^ ( P pCnt A ) ) e. RR ) | 
						
							| 108 | 62 | nngt0d |  |-  ( ph -> 0 < ( P ^ ( P pCnt A ) ) ) | 
						
							| 109 | 27 | nnred |  |-  ( ph -> A e. RR ) | 
						
							| 110 | 27 | nngt0d |  |-  ( ph -> 0 < A ) | 
						
							| 111 |  | ltdiv2 |  |-  ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( ( P ^ ( P pCnt A ) ) e. RR /\ 0 < ( P ^ ( P pCnt A ) ) ) /\ ( A e. RR /\ 0 < A ) ) -> ( 1 < ( P ^ ( P pCnt A ) ) <-> ( A / ( P ^ ( P pCnt A ) ) ) < ( A / 1 ) ) ) | 
						
							| 112 | 104 106 107 108 109 110 111 | syl222anc |  |-  ( ph -> ( 1 < ( P ^ ( P pCnt A ) ) <-> ( A / ( P ^ ( P pCnt A ) ) ) < ( A / 1 ) ) ) | 
						
							| 113 | 103 112 | mpbid |  |-  ( ph -> ( A / ( P ^ ( P pCnt A ) ) ) < ( A / 1 ) ) | 
						
							| 114 | 28 | div1d |  |-  ( ph -> ( A / 1 ) = A ) | 
						
							| 115 | 113 114 | breqtrd |  |-  ( ph -> ( A / ( P ^ ( P pCnt A ) ) ) < A ) | 
						
							| 116 |  | elfzo2 |  |-  ( ( A / ( P ^ ( P pCnt A ) ) ) e. ( 1 ..^ A ) <-> ( ( A / ( P ^ ( P pCnt A ) ) ) e. ( ZZ>= ` 1 ) /\ A e. ZZ /\ ( A / ( P ^ ( P pCnt A ) ) ) < A ) ) | 
						
							| 117 | 93 94 115 116 | syl3anbrc |  |-  ( ph -> ( A / ( P ^ ( P pCnt A ) ) ) e. ( 1 ..^ A ) ) | 
						
							| 118 | 91 13 117 | rspcdva |  |-  ( ph -> if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) <_ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) | 
						
							| 119 | 118 | adantr |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) <_ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) | 
						
							| 120 | 86 119 | eqbrtrrd |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> 1 <_ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) | 
						
							| 121 |  | 1re |  |-  1 e. RR | 
						
							| 122 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 123 | 121 122 | pm3.2i |  |-  ( 1 e. RR /\ 0 <_ 1 ) | 
						
							| 124 | 123 | a1i |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( 1 e. RR /\ 0 <_ 1 ) ) | 
						
							| 125 | 1 2 3 4 5 6 7 8 9 | dchrisum0ff |  |-  ( ph -> F : NN --> RR ) | 
						
							| 126 | 125 62 | ffvelcdmd |  |-  ( ph -> ( F ` ( P ^ ( P pCnt A ) ) ) e. RR ) | 
						
							| 127 | 126 | adantr |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( F ` ( P ^ ( P pCnt A ) ) ) e. RR ) | 
						
							| 128 | 125 65 | ffvelcdmd |  |-  ( ph -> ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. RR ) | 
						
							| 129 | 128 | adantr |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. RR ) | 
						
							| 130 |  | lemul12a |  |-  ( ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( F ` ( P ^ ( P pCnt A ) ) ) e. RR ) /\ ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. RR ) ) -> ( ( 1 <_ ( F ` ( P ^ ( P pCnt A ) ) ) /\ 1 <_ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) -> ( 1 x. 1 ) <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) ) | 
						
							| 131 | 124 127 124 129 130 | syl22anc |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( ( 1 <_ ( F ` ( P ^ ( P pCnt A ) ) ) /\ 1 <_ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) -> ( 1 x. 1 ) <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) ) | 
						
							| 132 | 58 120 131 | mp2and |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> ( 1 x. 1 ) <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) | 
						
							| 133 | 16 132 | eqbrtrrid |  |-  ( ( ph /\ ( sqrt ` A ) e. NN ) -> 1 <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) | 
						
							| 134 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 135 |  | 0re |  |-  0 e. RR | 
						
							| 136 | 121 135 | ifcli |  |-  if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) e. RR | 
						
							| 137 | 136 | a1i |  |-  ( ph -> if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) e. RR ) | 
						
							| 138 |  | breq2 |  |-  ( 1 = if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) -> ( 0 <_ 1 <-> 0 <_ if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) ) ) | 
						
							| 139 |  | breq2 |  |-  ( 0 = if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) -> ( 0 <_ 0 <-> 0 <_ if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) ) ) | 
						
							| 140 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 141 | 138 139 122 140 | keephyp |  |-  0 <_ if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) | 
						
							| 142 | 141 | a1i |  |-  ( ph -> 0 <_ if ( ( sqrt ` ( P ^ ( P pCnt A ) ) ) e. NN , 1 , 0 ) ) | 
						
							| 143 | 134 137 126 142 56 | letrd |  |-  ( ph -> 0 <_ ( F ` ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 144 | 121 135 | ifcli |  |-  if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) e. RR | 
						
							| 145 | 144 | a1i |  |-  ( ph -> if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) e. RR ) | 
						
							| 146 |  | breq2 |  |-  ( 1 = if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) -> ( 0 <_ 1 <-> 0 <_ if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) ) ) | 
						
							| 147 |  | breq2 |  |-  ( 0 = if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) -> ( 0 <_ 0 <-> 0 <_ if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) ) ) | 
						
							| 148 | 146 147 122 140 | keephyp |  |-  0 <_ if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) | 
						
							| 149 | 148 | a1i |  |-  ( ph -> 0 <_ if ( ( sqrt ` ( A / ( P ^ ( P pCnt A ) ) ) ) e. NN , 1 , 0 ) ) | 
						
							| 150 | 134 145 128 149 118 | letrd |  |-  ( ph -> 0 <_ ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) | 
						
							| 151 | 126 128 143 150 | mulge0d |  |-  ( ph -> 0 <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) | 
						
							| 152 | 151 | adantr |  |-  ( ( ph /\ -. ( sqrt ` A ) e. NN ) -> 0 <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) | 
						
							| 153 | 14 15 133 152 | ifbothda |  |-  ( ph -> if ( ( sqrt ` A ) e. NN , 1 , 0 ) <_ ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) | 
						
							| 154 | 62 | nncnd |  |-  ( ph -> ( P ^ ( P pCnt A ) ) e. CC ) | 
						
							| 155 | 62 | nnne0d |  |-  ( ph -> ( P ^ ( P pCnt A ) ) =/= 0 ) | 
						
							| 156 | 28 154 155 | divcan2d |  |-  ( ph -> ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) = A ) | 
						
							| 157 | 156 | fveq2d |  |-  ( ph -> ( F ` ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) ) = ( F ` A ) ) | 
						
							| 158 |  | pcndvds2 |  |-  ( ( P e. Prime /\ A e. NN ) -> -. P || ( A / ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 159 | 11 27 158 | syl2anc |  |-  ( ph -> -. P || ( A / ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 160 |  | coprm |  |-  ( ( P e. Prime /\ ( A / ( P ^ ( P pCnt A ) ) ) e. ZZ ) -> ( -. P || ( A / ( P ^ ( P pCnt A ) ) ) <-> ( P gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 ) ) | 
						
							| 161 | 11 66 160 | syl2anc |  |-  ( ph -> ( -. P || ( A / ( P ^ ( P pCnt A ) ) ) <-> ( P gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 ) ) | 
						
							| 162 | 159 161 | mpbid |  |-  ( ph -> ( P gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 ) | 
						
							| 163 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 164 | 11 163 | syl |  |-  ( ph -> P e. ZZ ) | 
						
							| 165 |  | rpexp1i |  |-  ( ( P e. ZZ /\ ( A / ( P ^ ( P pCnt A ) ) ) e. ZZ /\ ( P pCnt A ) e. NN0 ) -> ( ( P gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 -> ( ( P ^ ( P pCnt A ) ) gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 ) ) | 
						
							| 166 | 164 66 55 165 | syl3anc |  |-  ( ph -> ( ( P gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 -> ( ( P ^ ( P pCnt A ) ) gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 ) ) | 
						
							| 167 | 162 166 | mpd |  |-  ( ph -> ( ( P ^ ( P pCnt A ) ) gcd ( A / ( P ^ ( P pCnt A ) ) ) ) = 1 ) | 
						
							| 168 | 1 2 3 4 5 6 7 8 62 65 167 | dchrisum0fmul |  |-  ( ph -> ( F ` ( ( P ^ ( P pCnt A ) ) x. ( A / ( P ^ ( P pCnt A ) ) ) ) ) = ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) | 
						
							| 169 | 157 168 | eqtr3d |  |-  ( ph -> ( F ` A ) = ( ( F ` ( P ^ ( P pCnt A ) ) ) x. ( F ` ( A / ( P ^ ( P pCnt A ) ) ) ) ) ) | 
						
							| 170 | 153 169 | breqtrrd |  |-  ( ph -> if ( ( sqrt ` A ) e. NN , 1 , 0 ) <_ ( F ` A ) ) |