Metamath Proof Explorer


Theorem decpmatmullem

Description: Lemma for decpmatmul . (Contributed by AV, 20-Oct-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses decpmatmul.p P=Poly1R
decpmatmul.c C=NMatP
decpmatmul.b B=BaseC
Assertion decpmatmullem NFinRRingUBWBINJNK0IUCWdecompPMatKJ=RtNRl=0Kcoe1IUtlRcoe1tWJKl

Proof

Step Hyp Ref Expression
1 decpmatmul.p P=Poly1R
2 decpmatmul.c C=NMatP
3 decpmatmul.b B=BaseC
4 simpr NFinRRingRRing
5 4 3ad2ant1 NFinRRingUBWBINJNK0RRing
6 1 2 pmatring NFinRRingCRing
7 6 adantr NFinRRingUBWBCRing
8 simpl UBWBUB
9 8 adantl NFinRRingUBWBUB
10 simpr UBWBWB
11 10 adantl NFinRRingUBWBWB
12 eqid C=C
13 3 12 ringcl CRingUBWBUCWB
14 7 9 11 13 syl3anc NFinRRingUBWBUCWB
15 14 3adant3 NFinRRingUBWBINJNK0UCWB
16 simp33 NFinRRingUBWBINJNK0K0
17 3simpa INJNK0INJN
18 17 3ad2ant3 NFinRRingUBWBINJNK0INJN
19 1 2 3 decpmate RRingUCWBK0INJNIUCWdecompPMatKJ=coe1IUCWJK
20 5 15 16 18 19 syl31anc NFinRRingUBWBINJNK0IUCWdecompPMatKJ=coe1IUCWJK
21 1 ply1ring RRingPRing
22 eqid PmaMulNNN=PmaMulNNN
23 2 22 matmulr NFinPRingPmaMulNNN=C
24 23 eqcomd NFinPRingC=PmaMulNNN
25 21 24 sylan2 NFinRRingC=PmaMulNNN
26 25 3ad2ant1 NFinRRingUBWBINJNK0C=PmaMulNNN
27 26 oveqd NFinRRingUBWBINJNK0UCW=UPmaMulNNNW
28 27 oveqd NFinRRingUBWBINJNK0IUCWJ=IUPmaMulNNNWJ
29 eqid BaseP=BaseP
30 eqid P=P
31 21 adantl NFinRRingPRing
32 31 3ad2ant1 NFinRRingUBWBINJNK0PRing
33 simpl NFinRRingNFin
34 33 3ad2ant1 NFinRRingUBWBINJNK0NFin
35 2 29 matbas2 NFinPRingBasePN×N=BaseC
36 3 35 eqtr4id NFinPRingB=BasePN×N
37 21 36 sylan2 NFinRRingB=BasePN×N
38 37 eleq2d NFinRRingUBUBasePN×N
39 38 biimpcd UBNFinRRingUBasePN×N
40 39 adantr UBWBNFinRRingUBasePN×N
41 40 impcom NFinRRingUBWBUBasePN×N
42 41 3adant3 NFinRRingUBWBINJNK0UBasePN×N
43 21 35 sylan2 NFinRRingBasePN×N=BaseC
44 3 43 eqtr4id NFinRRingB=BasePN×N
45 44 eleq2d NFinRRingWBWBasePN×N
46 45 biimpcd WBNFinRRingWBasePN×N
47 46 adantl UBWBNFinRRingWBasePN×N
48 47 impcom NFinRRingUBWBWBasePN×N
49 48 3adant3 NFinRRingUBWBINJNK0WBasePN×N
50 simp31 NFinRRingUBWBINJNK0IN
51 simp32 NFinRRingUBWBINJNK0JN
52 22 29 30 32 34 34 34 42 49 50 51 mamufv NFinRRingUBWBINJNK0IUPmaMulNNNWJ=PtNIUtPtWJ
53 28 52 eqtrd NFinRRingUBWBINJNK0IUCWJ=PtNIUtPtWJ
54 53 fveq2d NFinRRingUBWBINJNK0coe1IUCWJ=coe1PtNIUtPtWJ
55 54 fveq1d NFinRRingUBWBINJNK0coe1IUCWJK=coe1PtNIUtPtWJK
56 32 adantr NFinRRingUBWBINJNK0tNPRing
57 50 adantr NFinRRingUBWBINJNK0tNIN
58 simpr NFinRRingUBWBINJNK0tNtN
59 simpl2l NFinRRingUBWBINJNK0tNUB
60 2 29 3 57 58 59 matecld NFinRRingUBWBINJNK0tNIUtBaseP
61 51 adantr NFinRRingUBWBINJNK0tNJN
62 simpl2r NFinRRingUBWBINJNK0tNWB
63 2 29 3 58 61 62 matecld NFinRRingUBWBINJNK0tNtWJBaseP
64 29 30 ringcl PRingIUtBasePtWJBasePIUtPtWJBaseP
65 56 60 63 64 syl3anc NFinRRingUBWBINJNK0tNIUtPtWJBaseP
66 65 ralrimiva NFinRRingUBWBINJNK0tNIUtPtWJBaseP
67 1 29 5 16 66 34 coe1fzgsumd NFinRRingUBWBINJNK0coe1PtNIUtPtWJK=RtNcoe1IUtPtWJK
68 simpl1r NFinRRingUBWBINJNK0tNRRing
69 eqid R=R
70 1 30 69 29 coe1mul RRingIUtBasePtWJBasePcoe1IUtPtWJ=k0Rl=0kcoe1IUtlRcoe1tWJkl
71 68 60 63 70 syl3anc NFinRRingUBWBINJNK0tNcoe1IUtPtWJ=k0Rl=0kcoe1IUtlRcoe1tWJkl
72 oveq2 k=K0k=0K
73 fvoveq1 k=Kcoe1tWJkl=coe1tWJKl
74 73 oveq2d k=Kcoe1IUtlRcoe1tWJkl=coe1IUtlRcoe1tWJKl
75 72 74 mpteq12dv k=Kl0kcoe1IUtlRcoe1tWJkl=l0Kcoe1IUtlRcoe1tWJKl
76 75 oveq2d k=KRl=0kcoe1IUtlRcoe1tWJkl=Rl=0Kcoe1IUtlRcoe1tWJKl
77 76 adantl NFinRRingUBWBINJNK0tNk=KRl=0kcoe1IUtlRcoe1tWJkl=Rl=0Kcoe1IUtlRcoe1tWJKl
78 16 adantr NFinRRingUBWBINJNK0tNK0
79 ovexd NFinRRingUBWBINJNK0tNRl=0Kcoe1IUtlRcoe1tWJKlV
80 71 77 78 79 fvmptd NFinRRingUBWBINJNK0tNcoe1IUtPtWJK=Rl=0Kcoe1IUtlRcoe1tWJKl
81 80 mpteq2dva NFinRRingUBWBINJNK0tNcoe1IUtPtWJK=tNRl=0Kcoe1IUtlRcoe1tWJKl
82 81 oveq2d NFinRRingUBWBINJNK0RtNcoe1IUtPtWJK=RtNRl=0Kcoe1IUtlRcoe1tWJKl
83 67 82 eqtrd NFinRRingUBWBINJNK0coe1PtNIUtPtWJK=RtNRl=0Kcoe1IUtlRcoe1tWJKl
84 20 55 83 3eqtrd NFinRRingUBWBINJNK0IUCWdecompPMatKJ=RtNRl=0Kcoe1IUtlRcoe1tWJKl