| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decpmatmul.p |  | 
						
							| 2 |  | decpmatmul.c |  | 
						
							| 3 |  | decpmatmul.b |  | 
						
							| 4 |  | simpr |  | 
						
							| 5 | 4 | 3ad2ant1 |  | 
						
							| 6 | 1 2 | pmatring |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 |  | simpl |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 |  | simpr |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 3 12 | ringcl |  | 
						
							| 14 | 7 9 11 13 | syl3anc |  | 
						
							| 15 | 14 | 3adant3 |  | 
						
							| 16 |  | simp33 |  | 
						
							| 17 |  | 3simpa |  | 
						
							| 18 | 17 | 3ad2ant3 |  | 
						
							| 19 | 1 2 3 | decpmate |  | 
						
							| 20 | 5 15 16 18 19 | syl31anc |  | 
						
							| 21 | 1 | ply1ring |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 2 22 | matmulr |  | 
						
							| 24 | 23 | eqcomd |  | 
						
							| 25 | 21 24 | sylan2 |  | 
						
							| 26 | 25 | 3ad2ant1 |  | 
						
							| 27 | 26 | oveqd |  | 
						
							| 28 | 27 | oveqd |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 21 | adantl |  | 
						
							| 32 | 31 | 3ad2ant1 |  | 
						
							| 33 |  | simpl |  | 
						
							| 34 | 33 | 3ad2ant1 |  | 
						
							| 35 | 2 29 | matbas2 |  | 
						
							| 36 | 3 35 | eqtr4id |  | 
						
							| 37 | 21 36 | sylan2 |  | 
						
							| 38 | 37 | eleq2d |  | 
						
							| 39 | 38 | biimpcd |  | 
						
							| 40 | 39 | adantr |  | 
						
							| 41 | 40 | impcom |  | 
						
							| 42 | 41 | 3adant3 |  | 
						
							| 43 | 21 35 | sylan2 |  | 
						
							| 44 | 3 43 | eqtr4id |  | 
						
							| 45 | 44 | eleq2d |  | 
						
							| 46 | 45 | biimpcd |  | 
						
							| 47 | 46 | adantl |  | 
						
							| 48 | 47 | impcom |  | 
						
							| 49 | 48 | 3adant3 |  | 
						
							| 50 |  | simp31 |  | 
						
							| 51 |  | simp32 |  | 
						
							| 52 | 22 29 30 32 34 34 34 42 49 50 51 | mamufv |  | 
						
							| 53 | 28 52 | eqtrd |  | 
						
							| 54 | 53 | fveq2d |  | 
						
							| 55 | 54 | fveq1d |  | 
						
							| 56 | 32 | adantr |  | 
						
							| 57 | 50 | adantr |  | 
						
							| 58 |  | simpr |  | 
						
							| 59 |  | simpl2l |  | 
						
							| 60 | 2 29 3 57 58 59 | matecld |  | 
						
							| 61 | 51 | adantr |  | 
						
							| 62 |  | simpl2r |  | 
						
							| 63 | 2 29 3 58 61 62 | matecld |  | 
						
							| 64 | 29 30 | ringcl |  | 
						
							| 65 | 56 60 63 64 | syl3anc |  | 
						
							| 66 | 65 | ralrimiva |  | 
						
							| 67 | 1 29 5 16 66 34 | coe1fzgsumd |  | 
						
							| 68 |  | simpl1r |  | 
						
							| 69 |  | eqid |  | 
						
							| 70 | 1 30 69 29 | coe1mul |  | 
						
							| 71 | 68 60 63 70 | syl3anc |  | 
						
							| 72 |  | oveq2 |  | 
						
							| 73 |  | fvoveq1 |  | 
						
							| 74 | 73 | oveq2d |  | 
						
							| 75 | 72 74 | mpteq12dv |  | 
						
							| 76 | 75 | oveq2d |  | 
						
							| 77 | 76 | adantl |  | 
						
							| 78 | 16 | adantr |  | 
						
							| 79 |  | ovexd |  | 
						
							| 80 | 71 77 78 79 | fvmptd |  | 
						
							| 81 | 80 | mpteq2dva |  | 
						
							| 82 | 81 | oveq2d |  | 
						
							| 83 | 67 82 | eqtrd |  | 
						
							| 84 | 20 55 83 | 3eqtrd |  |