Database
BASIC LINEAR ALGEBRA
Polynomial matrices
Collecting coefficients of polynomial matrices
decpmatmullem
Next ⟩
decpmatmul
Metamath Proof Explorer
Ascii
Unicode
Theorem
decpmatmullem
Description:
Lemma for
decpmatmul
.
(Contributed by
AV
, 20-Oct-2019)
(Revised by
AV
, 3-Dec-2019)
Ref
Expression
Hypotheses
decpmatmul.p
⊢
P
=
Poly
1
R
decpmatmul.c
⊢
C
=
N
Mat
P
decpmatmul.b
⊢
B
=
Base
C
Assertion
decpmatmullem
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
I
U
⋅
C
W
decompPMat
K
J
=
∑
R
t
∈
N
∑
R
l
=
0
K
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
K
−
l
Proof
Step
Hyp
Ref
Expression
1
decpmatmul.p
⊢
P
=
Poly
1
R
2
decpmatmul.c
⊢
C
=
N
Mat
P
3
decpmatmul.b
⊢
B
=
Base
C
4
simpr
⊢
N
∈
Fin
∧
R
∈
Ring
→
R
∈
Ring
5
4
3ad2ant1
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
R
∈
Ring
6
1
2
pmatring
⊢
N
∈
Fin
∧
R
∈
Ring
→
C
∈
Ring
7
6
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
→
C
∈
Ring
8
simpl
⊢
U
∈
B
∧
W
∈
B
→
U
∈
B
9
8
adantl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
→
U
∈
B
10
simpr
⊢
U
∈
B
∧
W
∈
B
→
W
∈
B
11
10
adantl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
→
W
∈
B
12
eqid
⊢
⋅
C
=
⋅
C
13
3
12
ringcl
⊢
C
∈
Ring
∧
U
∈
B
∧
W
∈
B
→
U
⋅
C
W
∈
B
14
7
9
11
13
syl3anc
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
→
U
⋅
C
W
∈
B
15
14
3adant3
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
U
⋅
C
W
∈
B
16
simp33
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
K
∈
ℕ
0
17
3simpa
⊢
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
I
∈
N
∧
J
∈
N
18
17
3ad2ant3
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
I
∈
N
∧
J
∈
N
19
1
2
3
decpmate
⊢
R
∈
Ring
∧
U
⋅
C
W
∈
B
∧
K
∈
ℕ
0
∧
I
∈
N
∧
J
∈
N
→
I
U
⋅
C
W
decompPMat
K
J
=
coe
1
I
U
⋅
C
W
J
K
20
5
15
16
18
19
syl31anc
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
I
U
⋅
C
W
decompPMat
K
J
=
coe
1
I
U
⋅
C
W
J
K
21
1
ply1ring
⊢
R
∈
Ring
→
P
∈
Ring
22
eqid
⊢
P
maMul
N
N
N
=
P
maMul
N
N
N
23
2
22
matmulr
⊢
N
∈
Fin
∧
P
∈
Ring
→
P
maMul
N
N
N
=
⋅
C
24
23
eqcomd
⊢
N
∈
Fin
∧
P
∈
Ring
→
⋅
C
=
P
maMul
N
N
N
25
21
24
sylan2
⊢
N
∈
Fin
∧
R
∈
Ring
→
⋅
C
=
P
maMul
N
N
N
26
25
3ad2ant1
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
⋅
C
=
P
maMul
N
N
N
27
26
oveqd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
U
⋅
C
W
=
U
P
maMul
N
N
N
W
28
27
oveqd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
I
U
⋅
C
W
J
=
I
U
P
maMul
N
N
N
W
J
29
eqid
⊢
Base
P
=
Base
P
30
eqid
⊢
⋅
P
=
⋅
P
31
21
adantl
⊢
N
∈
Fin
∧
R
∈
Ring
→
P
∈
Ring
32
31
3ad2ant1
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
P
∈
Ring
33
simpl
⊢
N
∈
Fin
∧
R
∈
Ring
→
N
∈
Fin
34
33
3ad2ant1
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
N
∈
Fin
35
2
29
matbas2
⊢
N
∈
Fin
∧
P
∈
Ring
→
Base
P
N
×
N
=
Base
C
36
3
35
eqtr4id
⊢
N
∈
Fin
∧
P
∈
Ring
→
B
=
Base
P
N
×
N
37
21
36
sylan2
⊢
N
∈
Fin
∧
R
∈
Ring
→
B
=
Base
P
N
×
N
38
37
eleq2d
⊢
N
∈
Fin
∧
R
∈
Ring
→
U
∈
B
↔
U
∈
Base
P
N
×
N
39
38
biimpcd
⊢
U
∈
B
→
N
∈
Fin
∧
R
∈
Ring
→
U
∈
Base
P
N
×
N
40
39
adantr
⊢
U
∈
B
∧
W
∈
B
→
N
∈
Fin
∧
R
∈
Ring
→
U
∈
Base
P
N
×
N
41
40
impcom
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
→
U
∈
Base
P
N
×
N
42
41
3adant3
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
U
∈
Base
P
N
×
N
43
21
35
sylan2
⊢
N
∈
Fin
∧
R
∈
Ring
→
Base
P
N
×
N
=
Base
C
44
3
43
eqtr4id
⊢
N
∈
Fin
∧
R
∈
Ring
→
B
=
Base
P
N
×
N
45
44
eleq2d
⊢
N
∈
Fin
∧
R
∈
Ring
→
W
∈
B
↔
W
∈
Base
P
N
×
N
46
45
biimpcd
⊢
W
∈
B
→
N
∈
Fin
∧
R
∈
Ring
→
W
∈
Base
P
N
×
N
47
46
adantl
⊢
U
∈
B
∧
W
∈
B
→
N
∈
Fin
∧
R
∈
Ring
→
W
∈
Base
P
N
×
N
48
47
impcom
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
→
W
∈
Base
P
N
×
N
49
48
3adant3
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
W
∈
Base
P
N
×
N
50
simp31
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
I
∈
N
51
simp32
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
J
∈
N
52
22
29
30
32
34
34
34
42
49
50
51
mamufv
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
I
U
P
maMul
N
N
N
W
J
=
∑
P
t
∈
N
I
U
t
⋅
P
t
W
J
53
28
52
eqtrd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
I
U
⋅
C
W
J
=
∑
P
t
∈
N
I
U
t
⋅
P
t
W
J
54
53
fveq2d
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
coe
1
I
U
⋅
C
W
J
=
coe
1
∑
P
t
∈
N
I
U
t
⋅
P
t
W
J
55
54
fveq1d
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
coe
1
I
U
⋅
C
W
J
K
=
coe
1
∑
P
t
∈
N
I
U
t
⋅
P
t
W
J
K
56
32
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
∧
t
∈
N
→
P
∈
Ring
57
50
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
∧
t
∈
N
→
I
∈
N
58
simpr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
∧
t
∈
N
→
t
∈
N
59
simpl2l
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
∧
t
∈
N
→
U
∈
B
60
2
29
3
57
58
59
matecld
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
∧
t
∈
N
→
I
U
t
∈
Base
P
61
51
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
∧
t
∈
N
→
J
∈
N
62
simpl2r
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
∧
t
∈
N
→
W
∈
B
63
2
29
3
58
61
62
matecld
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
∧
t
∈
N
→
t
W
J
∈
Base
P
64
29
30
ringcl
⊢
P
∈
Ring
∧
I
U
t
∈
Base
P
∧
t
W
J
∈
Base
P
→
I
U
t
⋅
P
t
W
J
∈
Base
P
65
56
60
63
64
syl3anc
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
∧
t
∈
N
→
I
U
t
⋅
P
t
W
J
∈
Base
P
66
65
ralrimiva
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
∀
t
∈
N
I
U
t
⋅
P
t
W
J
∈
Base
P
67
1
29
5
16
66
34
coe1fzgsumd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
coe
1
∑
P
t
∈
N
I
U
t
⋅
P
t
W
J
K
=
∑
R
t
∈
N
coe
1
I
U
t
⋅
P
t
W
J
K
68
simpl1r
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
∧
t
∈
N
→
R
∈
Ring
69
eqid
⊢
⋅
R
=
⋅
R
70
1
30
69
29
coe1mul
⊢
R
∈
Ring
∧
I
U
t
∈
Base
P
∧
t
W
J
∈
Base
P
→
coe
1
I
U
t
⋅
P
t
W
J
=
k
∈
ℕ
0
⟼
∑
R
l
=
0
k
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
k
−
l
71
68
60
63
70
syl3anc
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
∧
t
∈
N
→
coe
1
I
U
t
⋅
P
t
W
J
=
k
∈
ℕ
0
⟼
∑
R
l
=
0
k
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
k
−
l
72
oveq2
⊢
k
=
K
→
0
…
k
=
0
…
K
73
fvoveq1
⊢
k
=
K
→
coe
1
t
W
J
k
−
l
=
coe
1
t
W
J
K
−
l
74
73
oveq2d
⊢
k
=
K
→
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
k
−
l
=
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
K
−
l
75
72
74
mpteq12dv
⊢
k
=
K
→
l
∈
0
…
k
⟼
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
k
−
l
=
l
∈
0
…
K
⟼
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
K
−
l
76
75
oveq2d
⊢
k
=
K
→
∑
R
l
=
0
k
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
k
−
l
=
∑
R
l
=
0
K
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
K
−
l
77
76
adantl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
∧
t
∈
N
∧
k
=
K
→
∑
R
l
=
0
k
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
k
−
l
=
∑
R
l
=
0
K
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
K
−
l
78
16
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
∧
t
∈
N
→
K
∈
ℕ
0
79
ovexd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
∧
t
∈
N
→
∑
R
l
=
0
K
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
K
−
l
∈
V
80
71
77
78
79
fvmptd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
∧
t
∈
N
→
coe
1
I
U
t
⋅
P
t
W
J
K
=
∑
R
l
=
0
K
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
K
−
l
81
80
mpteq2dva
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
t
∈
N
⟼
coe
1
I
U
t
⋅
P
t
W
J
K
=
t
∈
N
⟼
∑
R
l
=
0
K
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
K
−
l
82
81
oveq2d
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
∑
R
t
∈
N
coe
1
I
U
t
⋅
P
t
W
J
K
=
∑
R
t
∈
N
∑
R
l
=
0
K
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
K
−
l
83
67
82
eqtrd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
coe
1
∑
P
t
∈
N
I
U
t
⋅
P
t
W
J
K
=
∑
R
t
∈
N
∑
R
l
=
0
K
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
K
−
l
84
20
55
83
3eqtrd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
U
∈
B
∧
W
∈
B
∧
I
∈
N
∧
J
∈
N
∧
K
∈
ℕ
0
→
I
U
⋅
C
W
decompPMat
K
J
=
∑
R
t
∈
N
∑
R
l
=
0
K
coe
1
I
U
t
l
⋅
R
coe
1
t
W
J
K
−
l