Metamath Proof Explorer


Theorem deg1add

Description: Exact degree of a sum of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1addle.y Y=Poly1R
deg1addle.d D=deg1R
deg1addle.r φRRing
deg1addle.b B=BaseY
deg1addle.p +˙=+Y
deg1addle.f φFB
deg1addle.g φGB
deg1add.l φDG<DF
Assertion deg1add φDF+˙G=DF

Proof

Step Hyp Ref Expression
1 deg1addle.y Y=Poly1R
2 deg1addle.d D=deg1R
3 deg1addle.r φRRing
4 deg1addle.b B=BaseY
5 deg1addle.p +˙=+Y
6 deg1addle.f φFB
7 deg1addle.g φGB
8 deg1add.l φDG<DF
9 1 ply1ring RRingYRing
10 3 9 syl φYRing
11 4 5 ringacl YRingFBGBF+˙GB
12 10 6 7 11 syl3anc φF+˙GB
13 2 1 4 deg1xrcl F+˙GBDF+˙G*
14 12 13 syl φDF+˙G*
15 2 1 4 deg1xrcl FBDF*
16 6 15 syl φDF*
17 1 2 3 4 5 6 7 deg1addle φDF+˙GifDFDGDGDF
18 2 1 4 deg1xrcl GBDG*
19 7 18 syl φDG*
20 xrltnle DG*DF*DG<DF¬DFDG
21 19 16 20 syl2anc φDG<DF¬DFDG
22 8 21 mpbid φ¬DFDG
23 22 iffalsed φifDFDGDGDF=DF
24 17 23 breqtrd φDF+˙GDF
25 nltmnf DG*¬DG<−∞
26 19 25 syl φ¬DG<−∞
27 8 adantr φF=0YDG<DF
28 fveq2 F=0YDF=D0Y
29 eqid 0Y=0Y
30 2 1 29 deg1z RRingD0Y=−∞
31 3 30 syl φD0Y=−∞
32 28 31 sylan9eqr φF=0YDF=−∞
33 27 32 breqtrd φF=0YDG<−∞
34 33 ex φF=0YDG<−∞
35 34 necon3bd φ¬DG<−∞F0Y
36 26 35 mpd φF0Y
37 2 1 29 4 deg1nn0cl RRingFBF0YDF0
38 3 6 36 37 syl3anc φDF0
39 eqid +R=+R
40 1 4 5 39 coe1addfv RRingFBGBDF0coe1F+˙GDF=coe1FDF+Rcoe1GDF
41 3 6 7 38 40 syl31anc φcoe1F+˙GDF=coe1FDF+Rcoe1GDF
42 eqid 0R=0R
43 eqid coe1G=coe1G
44 2 1 4 42 43 deg1lt GBDF0DG<DFcoe1GDF=0R
45 7 38 8 44 syl3anc φcoe1GDF=0R
46 45 oveq2d φcoe1FDF+Rcoe1GDF=coe1FDF+R0R
47 ringgrp RRingRGrp
48 3 47 syl φRGrp
49 eqid coe1F=coe1F
50 eqid BaseR=BaseR
51 49 4 1 50 coe1f FBcoe1F:0BaseR
52 6 51 syl φcoe1F:0BaseR
53 52 38 ffvelcdmd φcoe1FDFBaseR
54 50 39 42 grprid RGrpcoe1FDFBaseRcoe1FDF+R0R=coe1FDF
55 48 53 54 syl2anc φcoe1FDF+R0R=coe1FDF
56 41 46 55 3eqtrd φcoe1F+˙GDF=coe1FDF
57 2 1 29 4 42 49 deg1ldg RRingFBF0Ycoe1FDF0R
58 3 6 36 57 syl3anc φcoe1FDF0R
59 56 58 eqnetrd φcoe1F+˙GDF0R
60 eqid coe1F+˙G=coe1F+˙G
61 2 1 4 42 60 deg1ge F+˙GBDF0coe1F+˙GDF0RDFDF+˙G
62 12 38 59 61 syl3anc φDFDF+˙G
63 14 16 24 62 xrletrid φDF+˙G=DF