Description: Exact degree of a sum of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | deg1addle.y | |
|
deg1addle.d | |
||
deg1addle.r | |
||
deg1addle.b | |
||
deg1addle.p | |
||
deg1addle.f | |
||
deg1addle.g | |
||
deg1add.l | |
||
Assertion | deg1add | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1addle.y | |
|
2 | deg1addle.d | |
|
3 | deg1addle.r | |
|
4 | deg1addle.b | |
|
5 | deg1addle.p | |
|
6 | deg1addle.f | |
|
7 | deg1addle.g | |
|
8 | deg1add.l | |
|
9 | 1 | ply1ring | |
10 | 3 9 | syl | |
11 | 4 5 | ringacl | |
12 | 10 6 7 11 | syl3anc | |
13 | 2 1 4 | deg1xrcl | |
14 | 12 13 | syl | |
15 | 2 1 4 | deg1xrcl | |
16 | 6 15 | syl | |
17 | 1 2 3 4 5 6 7 | deg1addle | |
18 | 2 1 4 | deg1xrcl | |
19 | 7 18 | syl | |
20 | xrltnle | |
|
21 | 19 16 20 | syl2anc | |
22 | 8 21 | mpbid | |
23 | 22 | iffalsed | |
24 | 17 23 | breqtrd | |
25 | nltmnf | |
|
26 | 19 25 | syl | |
27 | 8 | adantr | |
28 | fveq2 | |
|
29 | eqid | |
|
30 | 2 1 29 | deg1z | |
31 | 3 30 | syl | |
32 | 28 31 | sylan9eqr | |
33 | 27 32 | breqtrd | |
34 | 33 | ex | |
35 | 34 | necon3bd | |
36 | 26 35 | mpd | |
37 | 2 1 29 4 | deg1nn0cl | |
38 | 3 6 36 37 | syl3anc | |
39 | eqid | |
|
40 | 1 4 5 39 | coe1addfv | |
41 | 3 6 7 38 40 | syl31anc | |
42 | eqid | |
|
43 | eqid | |
|
44 | 2 1 4 42 43 | deg1lt | |
45 | 7 38 8 44 | syl3anc | |
46 | 45 | oveq2d | |
47 | ringgrp | |
|
48 | 3 47 | syl | |
49 | eqid | |
|
50 | eqid | |
|
51 | 49 4 1 50 | coe1f | |
52 | 6 51 | syl | |
53 | 52 38 | ffvelcdmd | |
54 | 50 39 42 | grprid | |
55 | 48 53 54 | syl2anc | |
56 | 41 46 55 | 3eqtrd | |
57 | 2 1 29 4 42 49 | deg1ldg | |
58 | 3 6 36 57 | syl3anc | |
59 | 56 58 | eqnetrd | |
60 | eqid | |
|
61 | 2 1 4 42 60 | deg1ge | |
62 | 12 38 59 61 | syl3anc | |
63 | 14 16 24 62 | xrletrid | |