Metamath Proof Explorer


Theorem dfac8clem

Description: Lemma for dfac8c . (Contributed by Mario Carneiro, 10-Jan-2013)

Ref Expression
Hypothesis dfac8clem.1 F=sAιas|bs¬bra
Assertion dfac8clem ABrrWeAfzAzfzz

Proof

Step Hyp Ref Expression
1 dfac8clem.1 F=sAιas|bs¬bra
2 eldifsn sAsAs
3 elssuni sAsA
4 3 ad2antrl ABrWeAsAssA
5 simplr ABrWeAsAsrWeA
6 vex rV
7 exse2 rVrSeA
8 6 7 mp1i ABrWeAsAsrSeA
9 simprr ABrWeAsAss
10 wereu2 rWeArSeAsAs∃!asbs¬bra
11 5 8 4 9 10 syl22anc ABrWeAsAs∃!asbs¬bra
12 riotacl ∃!asbs¬braιas|bs¬bras
13 11 12 syl ABrWeAsAsιas|bs¬bras
14 4 13 sseldd ABrWeAsAsιas|bs¬braA
15 2 14 sylan2b ABrWeAsAιas|bs¬braA
16 15 1 fmptd ABrWeAF:AA
17 difexg ABAV
18 17 adantr ABrWeAAV
19 uniexg ABAV
20 19 adantr ABrWeAAV
21 fex2 F:AAAVAVFV
22 16 18 20 21 syl3anc ABrWeAFV
23 riotaex ιas|bs¬braV
24 1 fvmpt2 sAιas|bs¬braVFs=ιas|bs¬bra
25 23 24 mpan2 sAFs=ιas|bs¬bra
26 2 25 sylbir sAsFs=ιas|bs¬bra
27 26 adantl ABrWeAsAsFs=ιas|bs¬bra
28 27 13 eqeltrd ABrWeAsAsFss
29 28 expr ABrWeAsAsFss
30 29 ralrimiva ABrWeAsAsFss
31 nfv sz
32 nfmpt1 _ssAιas|bs¬bra
33 1 32 nfcxfr _sF
34 nfcv _sz
35 33 34 nffv _sFz
36 35 nfel1 sFzz
37 31 36 nfim szFzz
38 nfv zsFss
39 neeq1 z=szs
40 fveq2 z=sFz=Fs
41 id z=sz=s
42 40 41 eleq12d z=sFzzFss
43 39 42 imbi12d z=szFzzsFss
44 37 38 43 cbvralw zAzFzzsAsFss
45 30 44 sylibr ABrWeAzAzFzz
46 fveq1 f=Ffz=Fz
47 46 eleq1d f=FfzzFzz
48 47 imbi2d f=FzfzzzFzz
49 48 ralbidv f=FzAzfzzzAzFzz
50 22 45 49 spcedv ABrWeAfzAzfzz
51 50 ex ABrWeAfzAzfzz
52 51 exlimdv ABrrWeAfzAzfzz