| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dgradd.1 |  | 
						
							| 2 |  | dgradd.2 |  | 
						
							| 3 |  | plyaddcl |  | 
						
							| 4 | 3 | 3adant3 |  | 
						
							| 5 |  | dgrcl |  | 
						
							| 6 | 4 5 | syl |  | 
						
							| 7 | 6 | nn0red |  | 
						
							| 8 |  | dgrcl |  | 
						
							| 9 | 2 8 | eqeltrid |  | 
						
							| 10 | 9 | 3ad2ant2 |  | 
						
							| 11 | 10 | nn0red |  | 
						
							| 12 |  | dgrcl |  | 
						
							| 13 | 1 12 | eqeltrid |  | 
						
							| 14 | 13 | 3ad2ant1 |  | 
						
							| 15 | 14 | nn0red |  | 
						
							| 16 | 11 15 | ifcld |  | 
						
							| 17 | 1 2 | dgradd |  | 
						
							| 18 | 17 | 3adant3 |  | 
						
							| 19 | 11 | leidd |  | 
						
							| 20 |  | simp3 |  | 
						
							| 21 | 15 11 20 | ltled |  | 
						
							| 22 |  | breq1 |  | 
						
							| 23 |  | breq1 |  | 
						
							| 24 | 22 23 | ifboth |  | 
						
							| 25 | 19 21 24 | syl2anc |  | 
						
							| 26 | 7 16 11 18 25 | letrd |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 27 28 | coeadd |  | 
						
							| 30 | 29 | 3adant3 |  | 
						
							| 31 | 30 | fveq1d |  | 
						
							| 32 | 27 | coef3 |  | 
						
							| 33 | 32 | 3ad2ant1 |  | 
						
							| 34 | 33 | ffnd |  | 
						
							| 35 | 28 | coef3 |  | 
						
							| 36 | 35 | 3ad2ant2 |  | 
						
							| 37 | 36 | ffnd |  | 
						
							| 38 |  | nn0ex |  | 
						
							| 39 | 38 | a1i |  | 
						
							| 40 |  | inidm |  | 
						
							| 41 | 15 11 | ltnled |  | 
						
							| 42 | 20 41 | mpbid |  | 
						
							| 43 |  | simp1 |  | 
						
							| 44 | 27 1 | dgrub |  | 
						
							| 45 | 44 | 3expia |  | 
						
							| 46 | 43 10 45 | syl2anc |  | 
						
							| 47 | 46 | necon1bd |  | 
						
							| 48 | 42 47 | mpd |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 |  | eqidd |  | 
						
							| 51 | 34 37 39 39 40 49 50 | ofval |  | 
						
							| 52 | 10 51 | mpdan |  | 
						
							| 53 | 36 10 | ffvelcdmd |  | 
						
							| 54 | 53 | addlidd |  | 
						
							| 55 | 31 52 54 | 3eqtrd |  | 
						
							| 56 |  | simp2 |  | 
						
							| 57 |  | 0red |  | 
						
							| 58 | 14 | nn0ge0d |  | 
						
							| 59 | 57 15 11 58 20 | lelttrd |  | 
						
							| 60 | 59 | gt0ne0d |  | 
						
							| 61 | 2 28 | dgreq0 |  | 
						
							| 62 |  | fveq2 |  | 
						
							| 63 |  | dgr0 |  | 
						
							| 64 | 63 | eqcomi |  | 
						
							| 65 | 62 2 64 | 3eqtr4g |  | 
						
							| 66 | 61 65 | biimtrrdi |  | 
						
							| 67 | 66 | necon3d |  | 
						
							| 68 | 56 60 67 | sylc |  | 
						
							| 69 | 55 68 | eqnetrd |  | 
						
							| 70 |  | eqid |  | 
						
							| 71 |  | eqid |  | 
						
							| 72 | 70 71 | dgrub |  | 
						
							| 73 | 4 10 69 72 | syl3anc |  | 
						
							| 74 | 7 11 | letri3d |  | 
						
							| 75 | 26 73 74 | mpbir2and |  |