Metamath Proof Explorer


Theorem dgrlb

Description: If all the coefficients above M are zero, then the degree of F is at most M . (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses dgrub.1 A=coeffF
dgrub.2 N=degF
Assertion dgrlb FPolySM0AM+1=0NM

Proof

Step Hyp Ref Expression
1 dgrub.1 A=coeffF
2 dgrub.2 N=degF
3 dgrcl FPolySdegF0
4 2 3 eqeltrid FPolySN0
5 4 3ad2ant1 FPolySM0AM+1=0N0
6 5 nn0red FPolySM0AM+1=0N
7 simp2 FPolySM0AM+1=0M0
8 7 nn0red FPolySM0AM+1=0M
9 1 dgrlem FPolySA:0S0nxA-10xn
10 9 simpld FPolySA:0S0
11 10 3ad2ant1 FPolySM0AM+1=0A:0S0
12 ffn A:0S0AFn0
13 elpreima AFn0yA-10y0Ay0
14 11 12 13 3syl FPolySM0AM+1=0yA-10y0Ay0
15 14 biimpa FPolySM0AM+1=0yA-10y0Ay0
16 15 simpld FPolySM0AM+1=0yA-10y0
17 16 nn0red FPolySM0AM+1=0yA-10y
18 8 adantr FPolySM0AM+1=0yA-10M
19 eldifsni Ay0Ay0
20 15 19 simpl2im FPolySM0AM+1=0yA-10Ay0
21 simp3 FPolySM0AM+1=0AM+1=0
22 1 coef3 FPolySA:0
23 22 3ad2ant1 FPolySM0AM+1=0A:0
24 plyco0 M0A:0AM+1=0y0Ay0yM
25 7 23 24 syl2anc FPolySM0AM+1=0AM+1=0y0Ay0yM
26 21 25 mpbid FPolySM0AM+1=0y0Ay0yM
27 26 r19.21bi FPolySM0AM+1=0y0Ay0yM
28 16 27 syldan FPolySM0AM+1=0yA-10Ay0yM
29 20 28 mpd FPolySM0AM+1=0yA-10yM
30 17 18 29 lensymd FPolySM0AM+1=0yA-10¬M<y
31 30 ralrimiva FPolySM0AM+1=0yA-10¬M<y
32 nn0ssre 0
33 ltso <Or
34 soss 0<Or<Or0
35 32 33 34 mp2 <Or0
36 35 a1i FPolySM0AM+1=0<Or0
37 0zd FPolyS0
38 cnvimass A-10domA
39 38 10 fssdm FPolySA-100
40 9 simprd FPolySnxA-10xn
41 nn0uz 0=0
42 41 uzsupss 0A-100nxA-10xnn0xA-10¬n<xx0x<nyA-10x<y
43 37 39 40 42 syl3anc FPolySn0xA-10¬n<xx0x<nyA-10x<y
44 43 3ad2ant1 FPolySM0AM+1=0n0xA-10¬n<xx0x<nyA-10x<y
45 36 44 supnub FPolySM0AM+1=0M0yA-10¬M<y¬M<supA-100<
46 7 31 45 mp2and FPolySM0AM+1=0¬M<supA-100<
47 1 dgrval FPolySdegF=supA-100<
48 2 47 eqtrid FPolySN=supA-100<
49 48 3ad2ant1 FPolySM0AM+1=0N=supA-100<
50 49 breq2d FPolySM0AM+1=0M<NM<supA-100<
51 46 50 mtbird FPolySM0AM+1=0¬M<N
52 6 8 51 nltled FPolySM0AM+1=0NM