Description: Lemma for dia2dim . Obtain subset relation. (Contributed by NM, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dia2dimlem12.l | |
|
dia2dimlem12.j | |
||
dia2dimlem12.m | |
||
dia2dimlem12.a | |
||
dia2dimlem12.h | |
||
dia2dimlem12.t | |
||
dia2dimlem12.r | |
||
dia2dimlem12.y | |
||
dia2dimlem12.s | |
||
dia2dimlem12.pl | |
||
dia2dimlem12.n | |
||
dia2dimlem12.i | |
||
dia2dimlem12.k | |
||
dia2dimlem12.u | |
||
dia2dimlem12.v | |
||
dia2dimlem12.uv | |
||
Assertion | dia2dimlem12 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dia2dimlem12.l | |
|
2 | dia2dimlem12.j | |
|
3 | dia2dimlem12.m | |
|
4 | dia2dimlem12.a | |
|
5 | dia2dimlem12.h | |
|
6 | dia2dimlem12.t | |
|
7 | dia2dimlem12.r | |
|
8 | dia2dimlem12.y | |
|
9 | dia2dimlem12.s | |
|
10 | dia2dimlem12.pl | |
|
11 | dia2dimlem12.n | |
|
12 | dia2dimlem12.i | |
|
13 | dia2dimlem12.k | |
|
14 | dia2dimlem12.u | |
|
15 | dia2dimlem12.v | |
|
16 | dia2dimlem12.uv | |
|
17 | 13 | simpld | |
18 | 14 | simpld | |
19 | 15 | simpld | |
20 | eqid | |
|
21 | 20 2 4 | hlatjcl | |
22 | 17 18 19 21 | syl3anc | |
23 | 14 | simprd | |
24 | 15 | simprd | |
25 | 17 | hllatd | |
26 | 20 4 | atbase | |
27 | 18 26 | syl | |
28 | 20 4 | atbase | |
29 | 19 28 | syl | |
30 | 13 | simprd | |
31 | 20 5 | lhpbase | |
32 | 30 31 | syl | |
33 | 20 1 2 | latjle12 | |
34 | 25 27 29 32 33 | syl13anc | |
35 | 23 24 34 | mpbi2and | |
36 | 20 1 5 6 12 | diass | |
37 | 13 22 35 36 | syl12anc | |
38 | 37 | sseld | |
39 | 13 | 3ad2ant1 | |
40 | 14 | 3ad2ant1 | |
41 | 15 | 3ad2ant1 | |
42 | simp3 | |
|
43 | 16 | 3ad2ant1 | |
44 | simp2 | |
|
45 | 1 2 3 4 5 6 7 8 9 10 11 12 39 40 41 42 43 44 | dia2dimlem11 | |
46 | 45 | 3exp | |
47 | 38 46 | mpdd | |
48 | 47 | ssrdv | |