Metamath Proof Explorer


Theorem dia2dimlem12

Description: Lemma for dia2dim . Obtain subset relation. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem12.l ˙=K
dia2dimlem12.j ˙=joinK
dia2dimlem12.m ˙=meetK
dia2dimlem12.a A=AtomsK
dia2dimlem12.h H=LHypK
dia2dimlem12.t T=LTrnKW
dia2dimlem12.r R=trLKW
dia2dimlem12.y Y=DVecAKW
dia2dimlem12.s S=LSubSpY
dia2dimlem12.pl ˙=LSSumY
dia2dimlem12.n N=LSpanY
dia2dimlem12.i I=DIsoAKW
dia2dimlem12.k φKHLWH
dia2dimlem12.u φUAU˙W
dia2dimlem12.v φVAV˙W
dia2dimlem12.uv φUV
Assertion dia2dimlem12 φIU˙VIU˙IV

Proof

Step Hyp Ref Expression
1 dia2dimlem12.l ˙=K
2 dia2dimlem12.j ˙=joinK
3 dia2dimlem12.m ˙=meetK
4 dia2dimlem12.a A=AtomsK
5 dia2dimlem12.h H=LHypK
6 dia2dimlem12.t T=LTrnKW
7 dia2dimlem12.r R=trLKW
8 dia2dimlem12.y Y=DVecAKW
9 dia2dimlem12.s S=LSubSpY
10 dia2dimlem12.pl ˙=LSSumY
11 dia2dimlem12.n N=LSpanY
12 dia2dimlem12.i I=DIsoAKW
13 dia2dimlem12.k φKHLWH
14 dia2dimlem12.u φUAU˙W
15 dia2dimlem12.v φVAV˙W
16 dia2dimlem12.uv φUV
17 13 simpld φKHL
18 14 simpld φUA
19 15 simpld φVA
20 eqid BaseK=BaseK
21 20 2 4 hlatjcl KHLUAVAU˙VBaseK
22 17 18 19 21 syl3anc φU˙VBaseK
23 14 simprd φU˙W
24 15 simprd φV˙W
25 17 hllatd φKLat
26 20 4 atbase UAUBaseK
27 18 26 syl φUBaseK
28 20 4 atbase VAVBaseK
29 19 28 syl φVBaseK
30 13 simprd φWH
31 20 5 lhpbase WHWBaseK
32 30 31 syl φWBaseK
33 20 1 2 latjle12 KLatUBaseKVBaseKWBaseKU˙WV˙WU˙V˙W
34 25 27 29 32 33 syl13anc φU˙WV˙WU˙V˙W
35 23 24 34 mpbi2and φU˙V˙W
36 20 1 5 6 12 diass KHLWHU˙VBaseKU˙V˙WIU˙VT
37 13 22 35 36 syl12anc φIU˙VT
38 37 sseld φfIU˙VfT
39 13 3ad2ant1 φfIU˙VfTKHLWH
40 14 3ad2ant1 φfIU˙VfTUAU˙W
41 15 3ad2ant1 φfIU˙VfTVAV˙W
42 simp3 φfIU˙VfTfT
43 16 3ad2ant1 φfIU˙VfTUV
44 simp2 φfIU˙VfTfIU˙V
45 1 2 3 4 5 6 7 8 9 10 11 12 39 40 41 42 43 44 dia2dimlem11 φfIU˙VfTfIU˙IV
46 45 3exp φfIU˙VfTfIU˙IV
47 38 46 mpdd φfIU˙VfIU˙IV
48 47 ssrdv φIU˙VIU˙IV