Metamath Proof Explorer


Theorem dib2dim

Description: Extend dia2dim to partial isomorphism B. (Contributed by NM, 22-Sep-2014)

Ref Expression
Hypotheses dib2dim.l ˙=K
dib2dim.j ˙=joinK
dib2dim.a A=AtomsK
dib2dim.h H=LHypK
dib2dim.u U=DVecHKW
dib2dim.s ˙=LSSumU
dib2dim.i I=DIsoBKW
dib2dim.k φKHLWH
dib2dim.p φPAP˙W
dib2dim.q φQAQ˙W
Assertion dib2dim φIP˙QIP˙IQ

Proof

Step Hyp Ref Expression
1 dib2dim.l ˙=K
2 dib2dim.j ˙=joinK
3 dib2dim.a A=AtomsK
4 dib2dim.h H=LHypK
5 dib2dim.u U=DVecHKW
6 dib2dim.s ˙=LSSumU
7 dib2dim.i I=DIsoBKW
8 dib2dim.k φKHLWH
9 dib2dim.p φPAP˙W
10 dib2dim.q φQAQ˙W
11 4 7 dibvalrel KHLWHRelIP˙Q
12 8 11 syl φRelIP˙Q
13 eqid DVecAKW=DVecAKW
14 eqid LSSumDVecAKW=LSSumDVecAKW
15 eqid DIsoAKW=DIsoAKW
16 1 2 3 4 13 14 15 8 9 10 dia2dim φDIsoAKWP˙QDIsoAKWPLSSumDVecAKWDIsoAKWQ
17 16 sseld φfDIsoAKWP˙QfDIsoAKWPLSSumDVecAKWDIsoAKWQ
18 17 anim1d φfDIsoAKWP˙Qs=fLTrnKWIBaseKfDIsoAKWPLSSumDVecAKWDIsoAKWQs=fLTrnKWIBaseK
19 8 simpld φKHL
20 9 simpld φPA
21 10 simpld φQA
22 eqid BaseK=BaseK
23 22 2 3 hlatjcl KHLPAQAP˙QBaseK
24 19 20 21 23 syl3anc φP˙QBaseK
25 9 simprd φP˙W
26 10 simprd φQ˙W
27 19 hllatd φKLat
28 22 3 atbase PAPBaseK
29 20 28 syl φPBaseK
30 22 3 atbase QAQBaseK
31 21 30 syl φQBaseK
32 8 simprd φWH
33 22 4 lhpbase WHWBaseK
34 32 33 syl φWBaseK
35 22 1 2 latjle12 KLatPBaseKQBaseKWBaseKP˙WQ˙WP˙Q˙W
36 27 29 31 34 35 syl13anc φP˙WQ˙WP˙Q˙W
37 25 26 36 mpbi2and φP˙Q˙W
38 eqid LTrnKW=LTrnKW
39 eqid fLTrnKWIBaseK=fLTrnKWIBaseK
40 22 1 4 38 39 15 7 dibopelval2 KHLWHP˙QBaseKP˙Q˙WfsIP˙QfDIsoAKWP˙Qs=fLTrnKWIBaseK
41 8 24 37 40 syl12anc φfsIP˙QfDIsoAKWP˙Qs=fLTrnKWIBaseK
42 29 25 jca φPBaseKP˙W
43 31 26 jca φQBaseKQ˙W
44 22 1 4 38 39 13 5 14 6 15 7 8 42 43 diblsmopel φfsIP˙IQfDIsoAKWPLSSumDVecAKWDIsoAKWQs=fLTrnKWIBaseK
45 18 41 44 3imtr4d φfsIP˙QfsIP˙IQ
46 12 45 relssdv φIP˙QIP˙IQ