| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2zm |
|
| 2 |
1
|
3ad2ant1 |
|
| 3 |
2
|
zred |
|
| 4 |
|
nnrp |
|
| 5 |
4
|
3ad2ant2 |
|
| 6 |
3 5
|
modcld |
|
| 7 |
6
|
recnd |
|
| 8 |
|
zre |
|
| 9 |
8
|
3ad2ant1 |
|
| 10 |
9 5
|
modcld |
|
| 11 |
10
|
recnd |
|
| 12 |
7 11
|
negsubdi2d |
|
| 13 |
|
m1modmmod |
|
| 14 |
13
|
3adant3 |
|
| 15 |
14
|
negeqd |
|
| 16 |
12 15
|
eqtr3d |
|
| 17 |
|
iftrue |
|
| 18 |
17
|
adantr |
|
| 19 |
18
|
negeqd |
|
| 20 |
|
1red |
|
| 21 |
|
2re |
|
| 22 |
21
|
a1i |
|
| 23 |
|
nnre |
|
| 24 |
23
|
3ad2ant2 |
|
| 25 |
|
1lt2 |
|
| 26 |
25
|
a1i |
|
| 27 |
|
simp3 |
|
| 28 |
20 22 24 26 27
|
lttrd |
|
| 29 |
|
difrp |
|
| 30 |
20 24 29
|
syl2anc |
|
| 31 |
28 30
|
mpbid |
|
| 32 |
|
neglt |
|
| 33 |
31 32
|
syl |
|
| 34 |
33
|
adantl |
|
| 35 |
19 34
|
eqbrtrd |
|
| 36 |
|
iffalse |
|
| 37 |
36
|
adantr |
|
| 38 |
37
|
negeqd |
|
| 39 |
|
negneg1e1 |
|
| 40 |
|
df-2 |
|
| 41 |
40
|
breq1i |
|
| 42 |
41
|
biimpi |
|
| 43 |
42
|
3ad2ant3 |
|
| 44 |
20 20 24
|
ltaddsub2d |
|
| 45 |
43 44
|
mpbid |
|
| 46 |
39 45
|
eqbrtrid |
|
| 47 |
46
|
adantl |
|
| 48 |
38 47
|
eqbrtrd |
|
| 49 |
35 48
|
pm2.61ian |
|
| 50 |
16 49
|
eqbrtrd |
|