Metamath Proof Explorer


Theorem dihlspsnssN

Description: A subspace included in a 1-dim subspace belongs to the range of isomorphism H. (Contributed by NM, 26-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dih1dor0.h H=LHypK
dih1dor0.u U=DVecHKW
dihldor0.v V=BaseU
dih1dor0.s S=LSubSpU
dih1dor0.n N=LSpanU
dih1dor0.i I=DIsoHKW
Assertion dihlspsnssN KHLWHXVTNXTSTranI

Proof

Step Hyp Ref Expression
1 dih1dor0.h H=LHypK
2 dih1dor0.u U=DVecHKW
3 dihldor0.v V=BaseU
4 dih1dor0.s S=LSubSpU
5 dih1dor0.n N=LSpanU
6 dih1dor0.i I=DIsoHKW
7 simpr KHLWHXVTNXTST=NXT=NX
8 1 2 3 5 6 dihlsprn KHLWHXVNXranI
9 8 3adant3 KHLWHXVTNXNXranI
10 9 ad2antrr KHLWHXVTNXTST=NXNXranI
11 7 10 eqeltrd KHLWHXVTNXTST=NXTranI
12 simpr KHLWHXVTNXTST=0UT=0U
13 simpll1 KHLWHXVTNXTST=0UKHLWH
14 eqid 0.K=0.K
15 eqid 0U=0U
16 14 1 6 2 15 dih0 KHLWHI0.K=0U
17 13 16 syl KHLWHXVTNXTST=0UI0.K=0U
18 12 17 eqtr4d KHLWHXVTNXTST=0UT=I0.K
19 eqid BaseK=BaseK
20 19 1 6 dihfn KHLWHIFnBaseK
21 13 20 syl KHLWHXVTNXTST=0UIFnBaseK
22 simp1l KHLWHXVTNXKHL
23 22 ad2antrr KHLWHXVTNXTST=0UKHL
24 hlop KHLKOP
25 19 14 op0cl KOP0.KBaseK
26 23 24 25 3syl KHLWHXVTNXTST=0U0.KBaseK
27 fnfvelrn IFnBaseK0.KBaseKI0.KranI
28 21 26 27 syl2anc KHLWHXVTNXTST=0UI0.KranI
29 18 28 eqeltrd KHLWHXVTNXTST=0UTranI
30 simpl1 KHLWHXVTNXTSKHLWH
31 1 2 30 dvhlvec KHLWHXVTNXTSULVec
32 simpr KHLWHXVTNXTSTS
33 simpl2 KHLWHXVTNXTSXV
34 simpl3 KHLWHXVTNXTSTNX
35 3 15 4 5 lspsnat ULVecTSXVTNXT=NXT=0U
36 31 32 33 34 35 syl31anc KHLWHXVTNXTST=NXT=0U
37 11 29 36 mpjaodan KHLWHXVTNXTSTranI
38 37 ex KHLWHXVTNXTSTranI
39 1 2 6 4 dihsslss KHLWHranIS
40 39 3ad2ant1 KHLWHXVTNXranIS
41 40 sseld KHLWHXVTNXTranITS
42 38 41 impbid KHLWHXVTNXTSTranI