Description: A subspace included in a 1-dim subspace belongs to the range of isomorphism H. (Contributed by NM, 26-Apr-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dih1dor0.h | |
|
dih1dor0.u | |
||
dihldor0.v | |
||
dih1dor0.s | |
||
dih1dor0.n | |
||
dih1dor0.i | |
||
Assertion | dihlspsnssN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dih1dor0.h | |
|
2 | dih1dor0.u | |
|
3 | dihldor0.v | |
|
4 | dih1dor0.s | |
|
5 | dih1dor0.n | |
|
6 | dih1dor0.i | |
|
7 | simpr | |
|
8 | 1 2 3 5 6 | dihlsprn | |
9 | 8 | 3adant3 | |
10 | 9 | ad2antrr | |
11 | 7 10 | eqeltrd | |
12 | simpr | |
|
13 | simpll1 | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | 14 1 6 2 15 | dih0 | |
17 | 13 16 | syl | |
18 | 12 17 | eqtr4d | |
19 | eqid | |
|
20 | 19 1 6 | dihfn | |
21 | 13 20 | syl | |
22 | simp1l | |
|
23 | 22 | ad2antrr | |
24 | hlop | |
|
25 | 19 14 | op0cl | |
26 | 23 24 25 | 3syl | |
27 | fnfvelrn | |
|
28 | 21 26 27 | syl2anc | |
29 | 18 28 | eqeltrd | |
30 | simpl1 | |
|
31 | 1 2 30 | dvhlvec | |
32 | simpr | |
|
33 | simpl2 | |
|
34 | simpl3 | |
|
35 | 3 15 4 5 | lspsnat | |
36 | 31 32 33 34 35 | syl31anc | |
37 | 11 29 36 | mpjaodan | |
38 | 37 | ex | |
39 | 1 2 6 4 | dihsslss | |
40 | 39 | 3ad2ant1 | |
41 | 40 | sseld | |
42 | 38 41 | impbid | |