Metamath Proof Explorer


Theorem disjxun

Description: The union of two disjoint collections. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypothesis disjxun.1 x=yC=D
Assertion disjxun AB=DisjxABCDisjxACDisjxBCxAyBCD=

Proof

Step Hyp Ref Expression
1 disjxun.1 x=yC=D
2 disjel AB=xA¬xB
3 eleq1w x=yxByB
4 3 notbid x=y¬xB¬yB
5 2 4 syl5ibcom AB=xAx=y¬yB
6 5 con2d AB=xAyB¬x=y
7 6 impr AB=xAyB¬x=y
8 biorf ¬x=yCD=x=yCD=
9 7 8 syl AB=xAyBCD=x=yCD=
10 9 bicomd AB=xAyBx=yCD=CD=
11 10 2ralbidva AB=xAyBx=yCD=xAyBCD=
12 11 anbi2d AB=xAyAx=yCD=xAyBx=yCD=xAyAx=yCD=xAyBCD=
13 ralunb yABx=yCD=yAx=yCD=yBx=yCD=
14 13 ralbii xAyABx=yCD=xAyAx=yCD=yBx=yCD=
15 nfv zyABx=yCD=
16 nfcv _xAB
17 nfv xz=w
18 nfcsb1v _xz/xC
19 nfcsb1v _xw/xC
20 18 19 nfin _xz/xCw/xC
21 20 nfeq1 xz/xCw/xC=
22 17 21 nfor xz=wz/xCw/xC=
23 16 22 nfralw xwABz=wz/xCw/xC=
24 equequ2 w=yx=wx=y
25 nfcv _xy
26 nfcv _xD
27 25 26 1 csbhypf w=yw/xC=D
28 27 ineq2d w=yCw/xC=CD
29 28 eqeq1d w=yCw/xC=CD=
30 24 29 orbi12d w=yx=wCw/xC=x=yCD=
31 30 cbvralvw wABx=wCw/xC=yABx=yCD=
32 equequ1 x=zx=wz=w
33 csbeq1a x=zC=z/xC
34 33 ineq1d x=zCw/xC=z/xCw/xC
35 34 eqeq1d x=zCw/xC=z/xCw/xC=
36 32 35 orbi12d x=zx=wCw/xC=z=wz/xCw/xC=
37 36 ralbidv x=zwABx=wCw/xC=wABz=wz/xCw/xC=
38 31 37 bitr3id x=zyABx=yCD=wABz=wz/xCw/xC=
39 15 23 38 cbvralw xAyABx=yCD=zAwABz=wz/xCw/xC=
40 r19.26 xAyAx=yCD=yBx=yCD=xAyAx=yCD=xAyBx=yCD=
41 14 39 40 3bitr3i zAwABz=wz/xCw/xC=xAyAx=yCD=xAyBx=yCD=
42 1 disjor DisjxACxAyAx=yCD=
43 42 anbi1i DisjxACxAyBCD=xAyAx=yCD=xAyBCD=
44 12 41 43 3bitr4g AB=zAwABz=wz/xCw/xC=DisjxACxAyBCD=
45 nfv wz=xz/xCC=
46 equequ2 x=wz=xz=w
47 csbeq1a x=wC=w/xC
48 47 ineq2d x=wz/xCC=z/xCw/xC
49 48 eqeq1d x=wz/xCC=z/xCw/xC=
50 46 49 orbi12d x=wz=xz/xCC=z=wz/xCw/xC=
51 45 22 50 cbvralw xAz=xz/xCC=wAz=wz/xCw/xC=
52 equequ1 z=yz=xy=x
53 equcom y=xx=y
54 52 53 bitrdi z=yz=xx=y
55 25 26 1 csbhypf z=yz/xC=D
56 55 ineq1d z=yz/xCC=DC
57 incom DC=CD
58 56 57 eqtrdi z=yz/xCC=CD
59 58 eqeq1d z=yz/xCC=CD=
60 54 59 orbi12d z=yz=xz/xCC=x=yCD=
61 60 ralbidv z=yxAz=xz/xCC=xAx=yCD=
62 51 61 bitr3id z=ywAz=wz/xCw/xC=xAx=yCD=
63 62 cbvralvw zBwAz=wz/xCw/xC=yBxAx=yCD=
64 ralcom yBxAx=yCD=xAyBx=yCD=
65 63 64 bitri zBwAz=wz/xCw/xC=xAyBx=yCD=
66 65 11 bitrid AB=zBwAz=wz/xCw/xC=xAyBCD=
67 66 anbi1d AB=zBwAz=wz/xCw/xC=zBwBz=wz/xCw/xC=xAyBCD=zBwBz=wz/xCw/xC=
68 ralunb wABz=wz/xCw/xC=wAz=wz/xCw/xC=wBz=wz/xCw/xC=
69 68 ralbii zBwABz=wz/xCw/xC=zBwAz=wz/xCw/xC=wBz=wz/xCw/xC=
70 r19.26 zBwAz=wz/xCw/xC=wBz=wz/xCw/xC=zBwAz=wz/xCw/xC=zBwBz=wz/xCw/xC=
71 69 70 bitri zBwABz=wz/xCw/xC=zBwAz=wz/xCw/xC=zBwBz=wz/xCw/xC=
72 disjors DisjxBCzBwBz=wz/xCw/xC=
73 72 anbi2ci DisjxBCxAyBCD=xAyBCD=zBwBz=wz/xCw/xC=
74 67 71 73 3bitr4g AB=zBwABz=wz/xCw/xC=DisjxBCxAyBCD=
75 44 74 anbi12d AB=zAwABz=wz/xCw/xC=zBwABz=wz/xCw/xC=DisjxACxAyBCD=DisjxBCxAyBCD=
76 disjors DisjxABCzABwABz=wz/xCw/xC=
77 ralunb zABwABz=wz/xCw/xC=zAwABz=wz/xCw/xC=zBwABz=wz/xCw/xC=
78 76 77 bitri DisjxABCzAwABz=wz/xCw/xC=zBwABz=wz/xCw/xC=
79 df-3an DisjxACDisjxBCxAyBCD=DisjxACDisjxBCxAyBCD=
80 anandir DisjxACDisjxBCxAyBCD=DisjxACxAyBCD=DisjxBCxAyBCD=
81 79 80 bitri DisjxACDisjxBCxAyBCD=DisjxACxAyBCD=DisjxBCxAyBCD=
82 75 78 81 3bitr4g AB=DisjxABCDisjxACDisjxBCxAyBCD=