Description: The sum sum_ n <_ x ( 1 / sqrt n ) has the asymptotic expansion 2 sqrt x + L + O ( 1 / sqrt x ) , for some L . (Contributed by Mario Carneiro, 10-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divsqrtsum.2 | |
|
divsqrsum2.1 | |
||
Assertion | divsqrtsumo1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divsqrtsum.2 | |
|
2 | divsqrsum2.1 | |
|
3 | rpssre | |
|
4 | 3 | a1i | |
5 | 1 | divsqrsumf | |
6 | 5 | ffvelcdmi | |
7 | rpsup | |
|
8 | 7 | a1i | |
9 | 5 | a1i | |
10 | 9 | feqmptd | |
11 | 10 2 | eqbrtrrd | |
12 | 6 | adantl | |
13 | 8 11 12 | rlimrecl | |
14 | resubcl | |
|
15 | 6 13 14 | syl2anr | |
16 | 15 | recnd | |
17 | rpsqrtcl | |
|
18 | 17 | adantl | |
19 | 18 | rpcnd | |
20 | 16 19 | mulcld | |
21 | 1red | |
|
22 | 16 19 | absmuld | |
23 | 18 | rprege0d | |
24 | absid | |
|
25 | 23 24 | syl | |
26 | 25 | oveq2d | |
27 | 22 26 | eqtrd | |
28 | 1 2 | divsqrtsum2 | |
29 | 16 | abscld | |
30 | 1red | |
|
31 | 29 30 18 | lemuldivd | |
32 | 28 31 | mpbird | |
33 | 27 32 | eqbrtrd | |
34 | 33 | adantrr | |
35 | 4 20 21 21 34 | elo1d | |