Metamath Proof Explorer


Theorem divsqrtsumo1

Description: The sum sum_ n <_ x ( 1 / sqrt n ) has the asymptotic expansion 2 sqrt x + L + O ( 1 / sqrt x ) , for some L . (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses divsqrtsum.2 F=x+n=1x1n2x
divsqrsum2.1 φFL
Assertion divsqrtsumo1 φy+FyLy𝑂1

Proof

Step Hyp Ref Expression
1 divsqrtsum.2 F=x+n=1x1n2x
2 divsqrsum2.1 φFL
3 rpssre +
4 3 a1i φ+
5 1 divsqrsumf F:+
6 5 ffvelcdmi y+Fy
7 rpsup sup+*<=+∞
8 7 a1i φsup+*<=+∞
9 5 a1i φF:+
10 9 feqmptd φF=y+Fy
11 10 2 eqbrtrrd φy+FyL
12 6 adantl φy+Fy
13 8 11 12 rlimrecl φL
14 resubcl FyLFyL
15 6 13 14 syl2anr φy+FyL
16 15 recnd φy+FyL
17 rpsqrtcl y+y+
18 17 adantl φy+y+
19 18 rpcnd φy+y
20 16 19 mulcld φy+FyLy
21 1red φ1
22 16 19 absmuld φy+FyLy=FyLy
23 18 rprege0d φy+y0y
24 absid y0yy=y
25 23 24 syl φy+y=y
26 25 oveq2d φy+FyLy=FyLy
27 22 26 eqtrd φy+FyLy=FyLy
28 1 2 divsqrtsum2 φy+FyL1y
29 16 abscld φy+FyL
30 1red φy+1
31 29 30 18 lemuldivd φy+FyLy1FyL1y
32 28 31 mpbird φy+FyLy1
33 27 32 eqbrtrd φy+FyLy1
34 33 adantrr φy+1yFyLy1
35 4 20 21 21 34 elo1d φy+FyLy𝑂1