Description: The subring of diagonal matrices (over a commutative ring) is a commutative ring . (Contributed by AV, 20-Aug-2019) (Revised by AV, 18-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dmatid.a | |
|
dmatid.b | |
||
dmatid.0 | |
||
dmatid.d | |
||
dmatcrng.c | |
||
Assertion | dmatcrng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmatid.a | |
|
2 | dmatid.b | |
|
3 | dmatid.0 | |
|
4 | dmatid.d | |
|
5 | dmatcrng.c | |
|
6 | crngring | |
|
7 | 1 2 3 4 | dmatsrng | |
8 | 6 7 | sylan | |
9 | 5 | subrgring | |
10 | 8 9 | syl | |
11 | simp1lr | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | simp2 | |
|
15 | simp3 | |
|
16 | 1 13 3 4 | dmatmat | |
17 | 16 | imp | |
18 | 17 | adantrr | |
19 | 18 | 3ad2ant1 | |
20 | 1 12 13 14 15 19 | matecld | |
21 | 1 13 3 4 | dmatmat | |
22 | 21 | imp | |
23 | 22 | adantrl | |
24 | 23 | 3ad2ant1 | |
25 | 1 12 13 14 15 24 | matecld | |
26 | eqid | |
|
27 | 12 26 | crngcom | |
28 | 11 20 25 27 | syl3anc | |
29 | 28 | ifeq1d | |
30 | 29 | mpoeq3dva | |
31 | 6 | anim2i | |
32 | 1 2 3 4 | dmatmul | |
33 | 31 32 | sylan | |
34 | pm3.22 | |
|
35 | 1 2 3 4 | dmatmul | |
36 | 31 34 35 | syl2an | |
37 | 30 33 36 | 3eqtr4d | |
38 | 37 | ralrimivva | |
39 | 38 | ancoms | |
40 | 5 | subrgbas | |
41 | 40 | eqcomd | |
42 | eqid | |
|
43 | 5 42 | ressmulr | |
44 | 43 | eqcomd | |
45 | 44 | oveqd | |
46 | 44 | oveqd | |
47 | 45 46 | eqeq12d | |
48 | 41 47 | raleqbidv | |
49 | 41 48 | raleqbidv | |
50 | 8 49 | syl | |
51 | 39 50 | mpbird | |
52 | eqid | |
|
53 | eqid | |
|
54 | 52 53 | iscrng2 | |
55 | 10 51 54 | sylanbrc | |