Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dmdprdpr.z | |
|
dmdprdpr.0 | |
||
dmdprdpr.s | |
||
dmdprdpr.t | |
||
Assertion | dmdprdpr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmdprdpr.z | |
|
2 | dmdprdpr.0 | |
|
3 | dmdprdpr.s | |
|
4 | dmdprdpr.t | |
|
5 | 0ex | |
|
6 | dprdsn | |
|
7 | 5 3 6 | sylancr | |
8 | 7 | simpld | |
9 | xpscf | |
|
10 | 3 4 9 | sylanbrc | |
11 | 10 | ffnd | |
12 | 5 | prid1 | |
13 | df2o3 | |
|
14 | 12 13 | eleqtrri | |
15 | fnressn | |
|
16 | 11 14 15 | sylancl | |
17 | fvpr0o | |
|
18 | 3 17 | syl | |
19 | 18 | opeq2d | |
20 | 19 | sneqd | |
21 | 16 20 | eqtrd | |
22 | 8 21 | breqtrrd | |
23 | 1on | |
|
24 | dprdsn | |
|
25 | 23 4 24 | sylancr | |
26 | 25 | simpld | |
27 | 1oex | |
|
28 | 27 | prid2 | |
29 | 28 13 | eleqtrri | |
30 | fnressn | |
|
31 | 11 29 30 | sylancl | |
32 | fvpr1o | |
|
33 | 4 32 | syl | |
34 | 33 | opeq2d | |
35 | 34 | sneqd | |
36 | 31 35 | eqtrd | |
37 | 26 36 | breqtrrd | |
38 | 1n0 | |
|
39 | 38 | necomi | |
40 | disjsn2 | |
|
41 | 39 40 | mp1i | |
42 | df-pr | |
|
43 | 13 42 | eqtri | |
44 | 43 | a1i | |
45 | 10 41 44 1 2 | dmdprdsplit | |
46 | 3anass | |
|
47 | 45 46 | bitrdi | |
48 | 47 | baibd | |
49 | 48 | ex | |
50 | 22 37 49 | mp2and | |
51 | 21 | oveq2d | |
52 | 7 | simprd | |
53 | 51 52 | eqtrd | |
54 | 36 | oveq2d | |
55 | 25 | simprd | |
56 | 54 55 | eqtrd | |
57 | 56 | fveq2d | |
58 | 53 57 | sseq12d | |
59 | 53 56 | ineq12d | |
60 | 59 | eqeq1d | |
61 | 58 60 | anbi12d | |
62 | 50 61 | bitrd | |