Metamath Proof Explorer


Theorem dmdprdpr

Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dmdprdpr.z Z=CntzG
dmdprdpr.0 0˙=0G
dmdprdpr.s φSSubGrpG
dmdprdpr.t φTSubGrpG
Assertion dmdprdpr φGdomDProdS1𝑜TSZTST=0˙

Proof

Step Hyp Ref Expression
1 dmdprdpr.z Z=CntzG
2 dmdprdpr.0 0˙=0G
3 dmdprdpr.s φSSubGrpG
4 dmdprdpr.t φTSubGrpG
5 0ex V
6 dprdsn VSSubGrpGGdomDProdSGDProdS=S
7 5 3 6 sylancr φGdomDProdSGDProdS=S
8 7 simpld φGdomDProdS
9 xpscf S1𝑜T:2𝑜SubGrpGSSubGrpGTSubGrpG
10 3 4 9 sylanbrc φS1𝑜T:2𝑜SubGrpG
11 10 ffnd φS1𝑜TFn2𝑜
12 5 prid1 1𝑜
13 df2o3 2𝑜=1𝑜
14 12 13 eleqtrri 2𝑜
15 fnressn S1𝑜TFn2𝑜2𝑜S1𝑜T=S1𝑜T
16 11 14 15 sylancl φS1𝑜T=S1𝑜T
17 fvpr0o SSubGrpGS1𝑜T=S
18 3 17 syl φS1𝑜T=S
19 18 opeq2d φS1𝑜T=S
20 19 sneqd φS1𝑜T=S
21 16 20 eqtrd φS1𝑜T=S
22 8 21 breqtrrd φGdomDProdS1𝑜T
23 1on 1𝑜On
24 dprdsn 1𝑜OnTSubGrpGGdomDProd1𝑜TGDProd1𝑜T=T
25 23 4 24 sylancr φGdomDProd1𝑜TGDProd1𝑜T=T
26 25 simpld φGdomDProd1𝑜T
27 1oex 1𝑜V
28 27 prid2 1𝑜1𝑜
29 28 13 eleqtrri 1𝑜2𝑜
30 fnressn S1𝑜TFn2𝑜1𝑜2𝑜S1𝑜T1𝑜=1𝑜S1𝑜T1𝑜
31 11 29 30 sylancl φS1𝑜T1𝑜=1𝑜S1𝑜T1𝑜
32 fvpr1o TSubGrpGS1𝑜T1𝑜=T
33 4 32 syl φS1𝑜T1𝑜=T
34 33 opeq2d φ1𝑜S1𝑜T1𝑜=1𝑜T
35 34 sneqd φ1𝑜S1𝑜T1𝑜=1𝑜T
36 31 35 eqtrd φS1𝑜T1𝑜=1𝑜T
37 26 36 breqtrrd φGdomDProdS1𝑜T1𝑜
38 1n0 1𝑜
39 38 necomi 1𝑜
40 disjsn2 1𝑜1𝑜=
41 39 40 mp1i φ1𝑜=
42 df-pr 1𝑜=1𝑜
43 13 42 eqtri 2𝑜=1𝑜
44 43 a1i φ2𝑜=1𝑜
45 10 41 44 1 2 dmdprdsplit φGdomDProdS1𝑜TGdomDProdS1𝑜TGdomDProdS1𝑜T1𝑜GDProdS1𝑜TZGDProdS1𝑜T1𝑜GDProdS1𝑜TGDProdS1𝑜T1𝑜=0˙
46 3anass GdomDProdS1𝑜TGdomDProdS1𝑜T1𝑜GDProdS1𝑜TZGDProdS1𝑜T1𝑜GDProdS1𝑜TGDProdS1𝑜T1𝑜=0˙GdomDProdS1𝑜TGdomDProdS1𝑜T1𝑜GDProdS1𝑜TZGDProdS1𝑜T1𝑜GDProdS1𝑜TGDProdS1𝑜T1𝑜=0˙
47 45 46 bitrdi φGdomDProdS1𝑜TGdomDProdS1𝑜TGdomDProdS1𝑜T1𝑜GDProdS1𝑜TZGDProdS1𝑜T1𝑜GDProdS1𝑜TGDProdS1𝑜T1𝑜=0˙
48 47 baibd φGdomDProdS1𝑜TGdomDProdS1𝑜T1𝑜GdomDProdS1𝑜TGDProdS1𝑜TZGDProdS1𝑜T1𝑜GDProdS1𝑜TGDProdS1𝑜T1𝑜=0˙
49 48 ex φGdomDProdS1𝑜TGdomDProdS1𝑜T1𝑜GdomDProdS1𝑜TGDProdS1𝑜TZGDProdS1𝑜T1𝑜GDProdS1𝑜TGDProdS1𝑜T1𝑜=0˙
50 22 37 49 mp2and φGdomDProdS1𝑜TGDProdS1𝑜TZGDProdS1𝑜T1𝑜GDProdS1𝑜TGDProdS1𝑜T1𝑜=0˙
51 21 oveq2d φGDProdS1𝑜T=GDProdS
52 7 simprd φGDProdS=S
53 51 52 eqtrd φGDProdS1𝑜T=S
54 36 oveq2d φGDProdS1𝑜T1𝑜=GDProd1𝑜T
55 25 simprd φGDProd1𝑜T=T
56 54 55 eqtrd φGDProdS1𝑜T1𝑜=T
57 56 fveq2d φZGDProdS1𝑜T1𝑜=ZT
58 53 57 sseq12d φGDProdS1𝑜TZGDProdS1𝑜T1𝑜SZT
59 53 56 ineq12d φGDProdS1𝑜TGDProdS1𝑜T1𝑜=ST
60 59 eqeq1d φGDProdS1𝑜TGDProdS1𝑜T1𝑜=0˙ST=0˙
61 58 60 anbi12d φGDProdS1𝑜TZGDProdS1𝑜T1𝑜GDProdS1𝑜TGDProdS1𝑜T1𝑜=0˙SZTST=0˙
62 50 61 bitrd φGdomDProdS1𝑜TSZTST=0˙