Description: A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dprd0.0 | |
|
Assertion | dprdz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprd0.0 | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | simpl | |
|
5 | simpr | |
|
6 | 1 | 0subg | |
7 | 6 | ad2antrr | |
8 | 7 | fmpttd | |
9 | eqid | |
|
10 | 9 1 | grpidcl | |
11 | 10 | adantr | |
12 | 11 | snssd | |
13 | 9 2 | cntzsubg | |
14 | 12 13 | syldan | |
15 | 1 | subg0cl | |
16 | 14 15 | syl | |
17 | 16 | snssd | |
18 | 17 | adantr | |
19 | simpr1 | |
|
20 | eqidd | |
|
21 | eqid | |
|
22 | snex | |
|
23 | 20 21 22 | fvmpt3i | |
24 | 19 23 | syl | |
25 | simpr2 | |
|
26 | eqidd | |
|
27 | 26 21 22 | fvmpt3i | |
28 | 25 27 | syl | |
29 | 28 | fveq2d | |
30 | 18 24 29 | 3sstr4d | |
31 | 23 | adantl | |
32 | 31 | ineq1d | |
33 | 9 | subgacs | |
34 | 33 | ad2antrr | |
35 | 34 | acsmred | |
36 | imassrn | |
|
37 | 8 | adantr | |
38 | 37 | frnd | |
39 | mresspw | |
|
40 | 35 39 | syl | |
41 | 38 40 | sstrd | |
42 | 36 41 | sstrid | |
43 | sspwuni | |
|
44 | 42 43 | sylib | |
45 | 3 | mrccl | |
46 | 35 44 45 | syl2anc | |
47 | 1 | subg0cl | |
48 | 46 47 | syl | |
49 | 48 | snssd | |
50 | df-ss | |
|
51 | 49 50 | sylib | |
52 | 32 51 | eqtrd | |
53 | eqimss | |
|
54 | 52 53 | syl | |
55 | 2 1 3 4 5 8 30 54 | dmdprdd | |
56 | 21 7 | dmmptd | |
57 | 6 | adantr | |
58 | eqimss | |
|
59 | 31 58 | syl | |
60 | 55 56 57 59 | dprdlub | |
61 | dprdsubg | |
|
62 | 1 | subg0cl | |
63 | 55 61 62 | 3syl | |
64 | 63 | snssd | |
65 | 60 64 | eqssd | |
66 | 55 65 | jca | |