Metamath Proof Explorer


Theorem dprdz

Description: A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypothesis dprd0.0 0˙=0G
Assertion dprdz GGrpIVGdomDProdxI0˙GDProdxI0˙=0˙

Proof

Step Hyp Ref Expression
1 dprd0.0 0˙=0G
2 eqid CntzG=CntzG
3 eqid mrClsSubGrpG=mrClsSubGrpG
4 simpl GGrpIVGGrp
5 simpr GGrpIVIV
6 1 0subg GGrp0˙SubGrpG
7 6 ad2antrr GGrpIVxI0˙SubGrpG
8 7 fmpttd GGrpIVxI0˙:ISubGrpG
9 eqid BaseG=BaseG
10 9 1 grpidcl GGrp0˙BaseG
11 10 adantr GGrpIV0˙BaseG
12 11 snssd GGrpIV0˙BaseG
13 9 2 cntzsubg GGrp0˙BaseGCntzG0˙SubGrpG
14 12 13 syldan GGrpIVCntzG0˙SubGrpG
15 1 subg0cl CntzG0˙SubGrpG0˙CntzG0˙
16 14 15 syl GGrpIV0˙CntzG0˙
17 16 snssd GGrpIV0˙CntzG0˙
18 17 adantr GGrpIVyIzIyz0˙CntzG0˙
19 simpr1 GGrpIVyIzIyzyI
20 eqidd x=y0˙=0˙
21 eqid xI0˙=xI0˙
22 snex 0˙V
23 20 21 22 fvmpt3i yIxI0˙y=0˙
24 19 23 syl GGrpIVyIzIyzxI0˙y=0˙
25 simpr2 GGrpIVyIzIyzzI
26 eqidd x=z0˙=0˙
27 26 21 22 fvmpt3i zIxI0˙z=0˙
28 25 27 syl GGrpIVyIzIyzxI0˙z=0˙
29 28 fveq2d GGrpIVyIzIyzCntzGxI0˙z=CntzG0˙
30 18 24 29 3sstr4d GGrpIVyIzIyzxI0˙yCntzGxI0˙z
31 23 adantl GGrpIVyIxI0˙y=0˙
32 31 ineq1d GGrpIVyIxI0˙ymrClsSubGrpGxI0˙Iy=0˙mrClsSubGrpGxI0˙Iy
33 9 subgacs GGrpSubGrpGACSBaseG
34 33 ad2antrr GGrpIVyISubGrpGACSBaseG
35 34 acsmred GGrpIVyISubGrpGMooreBaseG
36 imassrn xI0˙IyranxI0˙
37 8 adantr GGrpIVyIxI0˙:ISubGrpG
38 37 frnd GGrpIVyIranxI0˙SubGrpG
39 mresspw SubGrpGMooreBaseGSubGrpG𝒫BaseG
40 35 39 syl GGrpIVyISubGrpG𝒫BaseG
41 38 40 sstrd GGrpIVyIranxI0˙𝒫BaseG
42 36 41 sstrid GGrpIVyIxI0˙Iy𝒫BaseG
43 sspwuni xI0˙Iy𝒫BaseGxI0˙IyBaseG
44 42 43 sylib GGrpIVyIxI0˙IyBaseG
45 3 mrccl SubGrpGMooreBaseGxI0˙IyBaseGmrClsSubGrpGxI0˙IySubGrpG
46 35 44 45 syl2anc GGrpIVyImrClsSubGrpGxI0˙IySubGrpG
47 1 subg0cl mrClsSubGrpGxI0˙IySubGrpG0˙mrClsSubGrpGxI0˙Iy
48 46 47 syl GGrpIVyI0˙mrClsSubGrpGxI0˙Iy
49 48 snssd GGrpIVyI0˙mrClsSubGrpGxI0˙Iy
50 df-ss 0˙mrClsSubGrpGxI0˙Iy0˙mrClsSubGrpGxI0˙Iy=0˙
51 49 50 sylib GGrpIVyI0˙mrClsSubGrpGxI0˙Iy=0˙
52 32 51 eqtrd GGrpIVyIxI0˙ymrClsSubGrpGxI0˙Iy=0˙
53 eqimss xI0˙ymrClsSubGrpGxI0˙Iy=0˙xI0˙ymrClsSubGrpGxI0˙Iy0˙
54 52 53 syl GGrpIVyIxI0˙ymrClsSubGrpGxI0˙Iy0˙
55 2 1 3 4 5 8 30 54 dmdprdd GGrpIVGdomDProdxI0˙
56 21 7 dmmptd GGrpIVdomxI0˙=I
57 6 adantr GGrpIV0˙SubGrpG
58 eqimss xI0˙y=0˙xI0˙y0˙
59 31 58 syl GGrpIVyIxI0˙y0˙
60 55 56 57 59 dprdlub GGrpIVGDProdxI0˙0˙
61 dprdsubg GdomDProdxI0˙GDProdxI0˙SubGrpG
62 1 subg0cl GDProdxI0˙SubGrpG0˙GDProdxI0˙
63 55 61 62 3syl GGrpIV0˙GDProdxI0˙
64 63 snssd GGrpIV0˙GDProdxI0˙
65 60 64 eqssd GGrpIVGDProdxI0˙=0˙
66 55 65 jca GGrpIVGdomDProdxI0˙GDProdxI0˙=0˙