Metamath Proof Explorer


Theorem drgextlsp

Description: The scalar field is a subspace of a subring algebra. (Contributed by Thierry Arnoux, 17-Jul-2023)

Ref Expression
Hypotheses drgext.b B=subringAlgEU
drgext.1 φEDivRing
drgext.2 φUSubRingE
drgext.f F=E𝑠U
drgext.3 φFDivRing
Assertion drgextlsp φULSubSpB

Proof

Step Hyp Ref Expression
1 drgext.b B=subringAlgEU
2 drgext.1 φEDivRing
3 drgext.2 φUSubRingE
4 drgext.f F=E𝑠U
5 drgext.3 φFDivRing
6 eqidd φScalarB=ScalarB
7 eqidd φBaseScalarB=BaseScalarB
8 eqidd φBaseB=BaseB
9 eqidd φ+B=+B
10 eqidd φB=B
11 eqidd φLSubSpB=LSubSpB
12 eqid BaseE=BaseE
13 12 subrgss USubRingEUBaseE
14 3 13 syl φUBaseE
15 1 a1i φB=subringAlgEU
16 15 14 srabase φBaseE=BaseB
17 14 16 sseqtrd φUBaseB
18 eqid 1E=1E
19 18 subrg1cl USubRingE1EU
20 ne0i 1EUU
21 3 19 20 3syl φU
22 drnggrp FDivRingFGrp
23 5 22 syl φFGrp
24 23 adantr φxBaseScalarBaUbUFGrp
25 15 14 sravsca φE=B
26 eqid E=E
27 4 26 ressmulr USubRingEE=F
28 3 27 syl φE=F
29 25 28 eqtr3d φB=F
30 29 oveqdr φxBaseScalarBaUbUxBa=xFa
31 drngring FDivRingFRing
32 5 31 syl φFRing
33 32 adantr φxBaseScalarBaUbUFRing
34 simpr1 φxBaseScalarBaUbUxBaseScalarB
35 15 14 srasca φE𝑠U=ScalarB
36 4 35 eqtrid φF=ScalarB
37 36 fveq2d φBaseF=BaseScalarB
38 37 adantr φxBaseScalarBaUbUBaseF=BaseScalarB
39 34 38 eleqtrrd φxBaseScalarBaUbUxBaseF
40 simpr2 φxBaseScalarBaUbUaU
41 4 12 ressbas2 UBaseEU=BaseF
42 14 41 syl φU=BaseF
43 42 adantr φxBaseScalarBaUbUU=BaseF
44 40 43 eleqtrd φxBaseScalarBaUbUaBaseF
45 eqid BaseF=BaseF
46 eqid F=F
47 45 46 ringcl FRingxBaseFaBaseFxFaBaseF
48 33 39 44 47 syl3anc φxBaseScalarBaUbUxFaBaseF
49 30 48 eqeltrd φxBaseScalarBaUbUxBaBaseF
50 simpr3 φxBaseScalarBaUbUbU
51 50 43 eleqtrd φxBaseScalarBaUbUbBaseF
52 eqid +F=+F
53 45 52 grpcl FGrpxBaBaseFbBaseFxBa+FbBaseF
54 24 49 51 53 syl3anc φxBaseScalarBaUbUxBa+FbBaseF
55 15 14 sraaddg φ+E=+B
56 eqid +E=+E
57 4 56 ressplusg USubRingE+E=+F
58 3 57 syl φ+E=+F
59 55 58 eqtr3d φ+B=+F
60 59 adantr φxBaseScalarBaUbU+B=+F
61 60 oveqd φxBaseScalarBaUbUxBa+Bb=xBa+Fb
62 54 61 43 3eltr4d φxBaseScalarBaUbUxBa+BbU
63 6 7 8 9 10 11 17 21 62 islssd φULSubSpB