Description: The scalar field is a subspace of a subring algebra. (Contributed by Thierry Arnoux, 17-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drgext.b | |
|
drgext.1 | |
||
drgext.2 | |
||
drgext.f | |
||
drgext.3 | |
||
Assertion | drgextlsp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drgext.b | |
|
2 | drgext.1 | |
|
3 | drgext.2 | |
|
4 | drgext.f | |
|
5 | drgext.3 | |
|
6 | eqidd | |
|
7 | eqidd | |
|
8 | eqidd | |
|
9 | eqidd | |
|
10 | eqidd | |
|
11 | eqidd | |
|
12 | eqid | |
|
13 | 12 | subrgss | |
14 | 3 13 | syl | |
15 | 1 | a1i | |
16 | 15 14 | srabase | |
17 | 14 16 | sseqtrd | |
18 | eqid | |
|
19 | 18 | subrg1cl | |
20 | ne0i | |
|
21 | 3 19 20 | 3syl | |
22 | drnggrp | |
|
23 | 5 22 | syl | |
24 | 23 | adantr | |
25 | 15 14 | sravsca | |
26 | eqid | |
|
27 | 4 26 | ressmulr | |
28 | 3 27 | syl | |
29 | 25 28 | eqtr3d | |
30 | 29 | oveqdr | |
31 | drngring | |
|
32 | 5 31 | syl | |
33 | 32 | adantr | |
34 | simpr1 | |
|
35 | 15 14 | srasca | |
36 | 4 35 | eqtrid | |
37 | 36 | fveq2d | |
38 | 37 | adantr | |
39 | 34 38 | eleqtrrd | |
40 | simpr2 | |
|
41 | 4 12 | ressbas2 | |
42 | 14 41 | syl | |
43 | 42 | adantr | |
44 | 40 43 | eleqtrd | |
45 | eqid | |
|
46 | eqid | |
|
47 | 45 46 | ringcl | |
48 | 33 39 44 47 | syl3anc | |
49 | 30 48 | eqeltrd | |
50 | simpr3 | |
|
51 | 50 43 | eleqtrd | |
52 | eqid | |
|
53 | 45 52 | grpcl | |
54 | 24 49 51 53 | syl3anc | |
55 | 15 14 | sraaddg | |
56 | eqid | |
|
57 | 4 56 | ressplusg | |
58 | 3 57 | syl | |
59 | 55 58 | eqtr3d | |
60 | 59 | adantr | |
61 | 60 | oveqd | |
62 | 54 61 43 | 3eltr4d | |
63 | 6 7 8 9 10 11 17 21 62 | islssd | |