| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drgext.b |
|
| 2 |
|
drgext.1 |
|
| 3 |
|
drgext.2 |
|
| 4 |
|
drgext.f |
|
| 5 |
|
drgext.3 |
|
| 6 |
|
eqidd |
|
| 7 |
|
eqidd |
|
| 8 |
|
eqidd |
|
| 9 |
|
eqidd |
|
| 10 |
|
eqidd |
|
| 11 |
|
eqidd |
|
| 12 |
|
eqid |
|
| 13 |
12
|
subrgss |
|
| 14 |
3 13
|
syl |
|
| 15 |
1
|
a1i |
|
| 16 |
15 14
|
srabase |
|
| 17 |
14 16
|
sseqtrd |
|
| 18 |
|
eqid |
|
| 19 |
18
|
subrg1cl |
|
| 20 |
|
ne0i |
|
| 21 |
3 19 20
|
3syl |
|
| 22 |
|
drnggrp |
|
| 23 |
5 22
|
syl |
|
| 24 |
23
|
adantr |
|
| 25 |
15 14
|
sravsca |
|
| 26 |
|
eqid |
|
| 27 |
4 26
|
ressmulr |
|
| 28 |
3 27
|
syl |
|
| 29 |
25 28
|
eqtr3d |
|
| 30 |
29
|
oveqdr |
|
| 31 |
|
drngring |
|
| 32 |
5 31
|
syl |
|
| 33 |
32
|
adantr |
|
| 34 |
|
simpr1 |
|
| 35 |
15 14
|
srasca |
|
| 36 |
4 35
|
eqtrid |
|
| 37 |
36
|
fveq2d |
|
| 38 |
37
|
adantr |
|
| 39 |
34 38
|
eleqtrrd |
|
| 40 |
|
simpr2 |
|
| 41 |
4 12
|
ressbas2 |
|
| 42 |
14 41
|
syl |
|
| 43 |
42
|
adantr |
|
| 44 |
40 43
|
eleqtrd |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
45 46
|
ringcl |
|
| 48 |
33 39 44 47
|
syl3anc |
|
| 49 |
30 48
|
eqeltrd |
|
| 50 |
|
simpr3 |
|
| 51 |
50 43
|
eleqtrd |
|
| 52 |
|
eqid |
|
| 53 |
45 52
|
grpcl |
|
| 54 |
24 49 51 53
|
syl3anc |
|
| 55 |
15 14
|
sraaddg |
|
| 56 |
|
eqid |
|
| 57 |
4 56
|
ressplusg |
|
| 58 |
3 57
|
syl |
|
| 59 |
55 58
|
eqtr3d |
|
| 60 |
59
|
adantr |
|
| 61 |
60
|
oveqd |
|
| 62 |
54 61 43
|
3eltr4d |
|
| 63 |
6 7 8 9 10 11 17 21 62
|
islssd |
|