Step |
Hyp |
Ref |
Expression |
1 |
|
drgext.b |
|
2 |
|
drgext.1 |
|
3 |
|
drgext.2 |
|
4 |
|
drgext.f |
|
5 |
|
drgext.3 |
|
6 |
|
eqidd |
|
7 |
|
eqidd |
|
8 |
|
eqidd |
|
9 |
|
eqidd |
|
10 |
|
eqidd |
|
11 |
|
eqidd |
|
12 |
|
eqid |
|
13 |
12
|
subrgss |
|
14 |
3 13
|
syl |
|
15 |
1
|
a1i |
|
16 |
15 14
|
srabase |
|
17 |
14 16
|
sseqtrd |
|
18 |
|
eqid |
|
19 |
18
|
subrg1cl |
|
20 |
|
ne0i |
|
21 |
3 19 20
|
3syl |
|
22 |
|
drnggrp |
|
23 |
5 22
|
syl |
|
24 |
23
|
adantr |
|
25 |
15 14
|
sravsca |
|
26 |
|
eqid |
|
27 |
4 26
|
ressmulr |
|
28 |
3 27
|
syl |
|
29 |
25 28
|
eqtr3d |
|
30 |
29
|
oveqdr |
|
31 |
|
drngring |
|
32 |
5 31
|
syl |
|
33 |
32
|
adantr |
|
34 |
|
simpr1 |
|
35 |
15 14
|
srasca |
|
36 |
4 35
|
eqtrid |
|
37 |
36
|
fveq2d |
|
38 |
37
|
adantr |
|
39 |
34 38
|
eleqtrrd |
|
40 |
|
simpr2 |
|
41 |
4 12
|
ressbas2 |
|
42 |
14 41
|
syl |
|
43 |
42
|
adantr |
|
44 |
40 43
|
eleqtrd |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
45 46
|
ringcl |
|
48 |
33 39 44 47
|
syl3anc |
|
49 |
30 48
|
eqeltrd |
|
50 |
|
simpr3 |
|
51 |
50 43
|
eleqtrd |
|
52 |
|
eqid |
|
53 |
45 52
|
grpcl |
|
54 |
24 49 51 53
|
syl3anc |
|
55 |
15 14
|
sraaddg |
|
56 |
|
eqid |
|
57 |
4 56
|
ressplusg |
|
58 |
3 57
|
syl |
|
59 |
55 58
|
eqtr3d |
|
60 |
59
|
adantr |
|
61 |
60
|
oveqd |
|
62 |
54 61 43
|
3eltr4d |
|
63 |
6 7 8 9 10 11 17 21 62
|
islssd |
|