Metamath Proof Explorer


Theorem dssmapnvod

Description: For any base set B the duality operator for self-mappings of subsets of that base set is its own inverse, an involution. (Contributed by RP, 20-Apr-2021)

Ref Expression
Hypotheses dssmapfvd.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
dssmapfvd.d D = O B
dssmapfvd.b φ B V
Assertion dssmapnvod φ D -1 = D

Proof

Step Hyp Ref Expression
1 dssmapfvd.o O = b V f 𝒫 b 𝒫 b s 𝒫 b b f b s
2 dssmapfvd.d D = O B
3 dssmapfvd.b φ B V
4 simpr φ g = s 𝒫 B B f B s g = s 𝒫 B B f B s
5 difeq2 s = t B s = B t
6 5 fveq2d s = t f B s = f B t
7 6 difeq2d s = t B f B s = B f B t
8 7 cbvmptv s 𝒫 B B f B s = t 𝒫 B B f B t
9 4 8 eqtrdi φ g = s 𝒫 B B f B s g = t 𝒫 B B f B t
10 ssun1 B B f B t
11 10 sspwi 𝒫 B 𝒫 B f B t
12 pwidg B V B 𝒫 B
13 3 12 syl φ B 𝒫 B
14 11 13 sseldi φ B 𝒫 B f B t
15 fvex f B t V
16 15 elpwun B 𝒫 B f B t B f B t 𝒫 B
17 14 16 sylib φ B f B t 𝒫 B
18 17 ad2antrr φ g = s 𝒫 B B f B s t 𝒫 B B f B t 𝒫 B
19 9 18 fmpt3d φ g = s 𝒫 B B f B s g : 𝒫 B 𝒫 B
20 3 pwexd φ 𝒫 B V
21 20 adantr φ g = s 𝒫 B B f B s 𝒫 B V
22 21 21 elmapd φ g = s 𝒫 B B f B s g 𝒫 B 𝒫 B g : 𝒫 B 𝒫 B
23 19 22 mpbird φ g = s 𝒫 B B f B s g 𝒫 B 𝒫 B
24 23 adantrl φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s g 𝒫 B 𝒫 B
25 simplr φ g = s 𝒫 B B f B s t 𝒫 B g = s 𝒫 B B f B s
26 difeq2 s = u B s = B u
27 26 fveq2d s = u f B s = f B u
28 27 difeq2d s = u B f B s = B f B u
29 28 cbvmptv s 𝒫 B B f B s = u 𝒫 B B f B u
30 25 29 eqtrdi φ g = s 𝒫 B B f B s t 𝒫 B g = u 𝒫 B B f B u
31 difeq2 u = B t B u = B B t
32 31 fveq2d u = B t f B u = f B B t
33 32 difeq2d u = B t B f B u = B f B B t
34 33 adantl φ g = s 𝒫 B B f B s t 𝒫 B u = B t B f B u = B f B B t
35 ssun1 B B t
36 35 sspwi 𝒫 B 𝒫 B t
37 36 13 sseldi φ B 𝒫 B t
38 vex t V
39 38 elpwun B 𝒫 B t B t 𝒫 B
40 37 39 sylib φ B t 𝒫 B
41 40 ad2antrr φ g = s 𝒫 B B f B s t 𝒫 B B t 𝒫 B
42 difexg B V B f B B t V
43 3 42 syl φ B f B B t V
44 43 ad2antrr φ g = s 𝒫 B B f B s t 𝒫 B B f B B t V
45 30 34 41 44 fvmptd φ g = s 𝒫 B B f B s t 𝒫 B g B t = B f B B t
46 45 difeq2d φ g = s 𝒫 B B f B s t 𝒫 B B g B t = B B f B B t
47 46 adantlrl φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s t 𝒫 B B g B t = B B f B B t
48 elpwi t 𝒫 B t B
49 dfss4 t B B B t = t
50 48 49 sylib t 𝒫 B B B t = t
51 50 fveq2d t 𝒫 B f B B t = f t
52 51 difeq2d t 𝒫 B B f B B t = B f t
53 52 difeq2d t 𝒫 B B B f B B t = B B f t
54 53 adantl φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s t 𝒫 B B B f B B t = B B f t
55 20 20 elmapd φ f 𝒫 B 𝒫 B f : 𝒫 B 𝒫 B
56 55 biimpa φ f 𝒫 B 𝒫 B f : 𝒫 B 𝒫 B
57 56 ffvelrnda φ f 𝒫 B 𝒫 B t 𝒫 B f t 𝒫 B
58 57 elpwid φ f 𝒫 B 𝒫 B t 𝒫 B f t B
59 dfss4 f t B B B f t = f t
60 58 59 sylib φ f 𝒫 B 𝒫 B t 𝒫 B B B f t = f t
61 60 adantlrr φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s t 𝒫 B B B f t = f t
62 47 54 61 3eqtrrd φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s t 𝒫 B f t = B g B t
63 62 ralrimiva φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s t 𝒫 B f t = B g B t
64 elmapfn f 𝒫 B 𝒫 B f Fn 𝒫 B
65 64 ad2antrl φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s f Fn 𝒫 B
66 difeq2 t = z B t = B z
67 66 fveq2d t = z g B t = g B z
68 67 difeq2d t = z B g B t = B g B z
69 difexg B V B g B t V
70 3 69 syl φ B g B t V
71 70 ad2antrr φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s t 𝒫 B B g B t V
72 difexg B V B g B z V
73 3 72 syl φ B g B z V
74 73 ad2antrr φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s z 𝒫 B B g B z V
75 65 68 71 74 fnmptfvd φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s f = z 𝒫 B B g B z t 𝒫 B f t = B g B t
76 63 75 mpbird φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s f = z 𝒫 B B g B z
77 24 76 jca φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s g 𝒫 B 𝒫 B f = z 𝒫 B B g B z
78 simpr φ f = z 𝒫 B B g B z f = z 𝒫 B B g B z
79 difeq2 z = t B z = B t
80 79 fveq2d z = t g B z = g B t
81 80 difeq2d z = t B g B z = B g B t
82 81 cbvmptv z 𝒫 B B g B z = t 𝒫 B B g B t
83 78 82 eqtrdi φ f = z 𝒫 B B g B z f = t 𝒫 B B g B t
84 ssun1 B B g B t
85 84 sspwi 𝒫 B 𝒫 B g B t
86 85 13 sseldi φ B 𝒫 B g B t
87 fvex g B t V
88 87 elpwun B 𝒫 B g B t B g B t 𝒫 B
89 86 88 sylib φ B g B t 𝒫 B
90 89 ad2antrr φ f = z 𝒫 B B g B z t 𝒫 B B g B t 𝒫 B
91 83 90 fmpt3d φ f = z 𝒫 B B g B z f : 𝒫 B 𝒫 B
92 20 adantr φ f = z 𝒫 B B g B z 𝒫 B V
93 92 92 elmapd φ f = z 𝒫 B B g B z f 𝒫 B 𝒫 B f : 𝒫 B 𝒫 B
94 91 93 mpbird φ f = z 𝒫 B B g B z f 𝒫 B 𝒫 B
95 94 adantrl φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z f 𝒫 B 𝒫 B
96 simplr φ f = z 𝒫 B B g B z t 𝒫 B f = z 𝒫 B B g B z
97 difeq2 z = u B z = B u
98 97 fveq2d z = u g B z = g B u
99 98 difeq2d z = u B g B z = B g B u
100 99 cbvmptv z 𝒫 B B g B z = u 𝒫 B B g B u
101 96 100 eqtrdi φ f = z 𝒫 B B g B z t 𝒫 B f = u 𝒫 B B g B u
102 31 fveq2d u = B t g B u = g B B t
103 102 difeq2d u = B t B g B u = B g B B t
104 103 adantl φ f = z 𝒫 B B g B z t 𝒫 B u = B t B g B u = B g B B t
105 40 ad2antrr φ f = z 𝒫 B B g B z t 𝒫 B B t 𝒫 B
106 difexg B V B g B B t V
107 3 106 syl φ B g B B t V
108 107 ad2antrr φ f = z 𝒫 B B g B z t 𝒫 B B g B B t V
109 101 104 105 108 fvmptd φ f = z 𝒫 B B g B z t 𝒫 B f B t = B g B B t
110 109 difeq2d φ f = z 𝒫 B B g B z t 𝒫 B B f B t = B B g B B t
111 110 adantlrl φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z t 𝒫 B B f B t = B B g B B t
112 50 fveq2d t 𝒫 B g B B t = g t
113 112 difeq2d t 𝒫 B B g B B t = B g t
114 113 difeq2d t 𝒫 B B B g B B t = B B g t
115 114 adantl φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z t 𝒫 B B B g B B t = B B g t
116 20 20 elmapd φ g 𝒫 B 𝒫 B g : 𝒫 B 𝒫 B
117 116 biimpa φ g 𝒫 B 𝒫 B g : 𝒫 B 𝒫 B
118 117 ffvelrnda φ g 𝒫 B 𝒫 B t 𝒫 B g t 𝒫 B
119 118 elpwid φ g 𝒫 B 𝒫 B t 𝒫 B g t B
120 dfss4 g t B B B g t = g t
121 119 120 sylib φ g 𝒫 B 𝒫 B t 𝒫 B B B g t = g t
122 121 adantlrr φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z t 𝒫 B B B g t = g t
123 111 115 122 3eqtrrd φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z t 𝒫 B g t = B f B t
124 123 ralrimiva φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z t 𝒫 B g t = B f B t
125 elmapfn g 𝒫 B 𝒫 B g Fn 𝒫 B
126 125 ad2antrl φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z g Fn 𝒫 B
127 difeq2 t = s B t = B s
128 127 fveq2d t = s f B t = f B s
129 128 difeq2d t = s B f B t = B f B s
130 difexg B V B f B t V
131 3 130 syl φ B f B t V
132 131 ad2antrr φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z t 𝒫 B B f B t V
133 difexg B V B f B s V
134 3 133 syl φ B f B s V
135 134 ad2antrr φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z s 𝒫 B B f B s V
136 126 129 132 135 fnmptfvd φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z g = s 𝒫 B B f B s t 𝒫 B g t = B f B t
137 124 136 mpbird φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z g = s 𝒫 B B f B s
138 95 137 jca φ g 𝒫 B 𝒫 B f = z 𝒫 B B g B z f 𝒫 B 𝒫 B g = s 𝒫 B B f B s
139 77 138 impbida φ f 𝒫 B 𝒫 B g = s 𝒫 B B f B s g 𝒫 B 𝒫 B f = z 𝒫 B B g B z
140 139 mptcnv φ f 𝒫 B 𝒫 B s 𝒫 B B f B s -1 = g 𝒫 B 𝒫 B z 𝒫 B B g B z
141 1 2 3 dssmapfvd φ D = f 𝒫 B 𝒫 B s 𝒫 B B f B s
142 141 cnveqd φ D -1 = f 𝒫 B 𝒫 B s 𝒫 B B f B s -1
143 fveq1 f = g f b s = g b s
144 143 difeq2d f = g b f b s = b g b s
145 144 mpteq2dv f = g s 𝒫 b b f b s = s 𝒫 b b g b s
146 difeq2 s = z b s = b z
147 146 fveq2d s = z g b s = g b z
148 147 difeq2d s = z b g b s = b g b z
149 148 cbvmptv s 𝒫 b b g b s = z 𝒫 b b g b z
150 145 149 eqtrdi f = g s 𝒫 b b f b s = z 𝒫 b b g b z
151 150 cbvmptv f 𝒫 b 𝒫 b s 𝒫 b b f b s = g 𝒫 b 𝒫 b z 𝒫 b b g b z
152 151 mpteq2i b V f 𝒫 b 𝒫 b s 𝒫 b b f b s = b V g 𝒫 b 𝒫 b z 𝒫 b b g b z
153 1 152 eqtri O = b V g 𝒫 b 𝒫 b z 𝒫 b b g b z
154 153 2 3 dssmapfvd φ D = g 𝒫 B 𝒫 B z 𝒫 B B g B z
155 140 142 154 3eqtr4d φ D -1 = D