Description: A sum commutation from sum_ n <_ A , sum_ d || n , B ( n , d ) to sum_ d <_ A , sum_ m <_ A / d , B ( n , d m ) . (Contributed by Mario Carneiro, 4-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvdsflsumcom.1 | |
|
dvdsflsumcom.2 | |
||
dvdsflsumcom.3 | |
||
Assertion | dvdsflsumcom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsflsumcom.1 | |
|
2 | dvdsflsumcom.2 | |
|
3 | dvdsflsumcom.3 | |
|
4 | fzfid | |
|
5 | fzfid | |
|
6 | elfznn | |
|
7 | 6 | adantl | |
8 | dvdsssfz1 | |
|
9 | 7 8 | syl | |
10 | 5 9 | ssfid | |
11 | nnre | |
|
12 | 11 | ad2antrl | |
13 | 7 | adantr | |
14 | 13 | nnred | |
15 | 2 | ad2antrr | |
16 | nnz | |
|
17 | dvdsle | |
|
18 | 16 7 17 | syl2anr | |
19 | 18 | impr | |
20 | fznnfl | |
|
21 | 2 20 | syl | |
22 | 21 | simplbda | |
23 | 22 | adantr | |
24 | 12 14 15 19 23 | letrd | |
25 | 24 | ex | |
26 | 25 | pm4.71rd | |
27 | ancom | |
|
28 | an32 | |
|
29 | 27 28 | bitri | |
30 | 26 29 | bitrdi | |
31 | fznnfl | |
|
32 | 2 31 | syl | |
33 | 32 | adantr | |
34 | 33 | anbi1d | |
35 | 30 34 | bitr4d | |
36 | 35 | pm5.32da | |
37 | an12 | |
|
38 | 36 37 | bitrdi | |
39 | breq1 | |
|
40 | 39 | elrab | |
41 | 40 | anbi2i | |
42 | breq2 | |
|
43 | 42 | elrab | |
44 | 43 | anbi2i | |
45 | 38 41 44 | 3bitr4g | |
46 | 4 4 10 45 3 | fsumcom2 | |
47 | fzfid | |
|
48 | 2 | adantr | |
49 | 32 | simprbda | |
50 | eqid | |
|
51 | 48 49 50 | dvdsflf1o | |
52 | oveq2 | |
|
53 | ovex | |
|
54 | 52 50 53 | fvmpt | |
55 | 54 | adantl | |
56 | 45 | biimpar | |
57 | 56 3 | syldan | |
58 | 57 | anassrs | |
59 | 1 47 51 55 58 | fsumf1o | |
60 | 59 | sumeq2dv | |
61 | 46 60 | eqtrd | |