Description: If a number is divisible by an integer greater than 1 and less than the number, the number is not prime. (Contributed by AV, 24-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvdsnprmd.g | |
|
dvdsnprmd.l | |
||
dvdsnprmd.d | |
||
Assertion | dvdsnprmd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsnprmd.g | |
|
2 | dvdsnprmd.l | |
|
3 | dvdsnprmd.d | |
|
4 | dvdszrcl | |
|
5 | divides | |
|
6 | 3 4 5 | 3syl | |
7 | 2z | |
|
8 | 7 | a1i | |
9 | simplr | |
|
10 | 2 | adantr | |
11 | 10 | adantr | |
12 | breq2 | |
|
13 | 12 | adantl | |
14 | 11 13 | mpbird | |
15 | zre | |
|
16 | 15 | 3ad2ant1 | |
17 | zre | |
|
18 | 17 | 3ad2ant3 | |
19 | 0lt1 | |
|
20 | 0red | |
|
21 | 1red | |
|
22 | lttr | |
|
23 | 20 21 15 22 | syl3anc | |
24 | 19 23 | mpani | |
25 | 24 | imp | |
26 | 25 | 3adant3 | |
27 | 16 18 26 | 3jca | |
28 | 27 | 3exp | |
29 | 28 | adantr | |
30 | 3 4 29 | 3syl | |
31 | 1 30 | mpd | |
32 | 31 | imp | |
33 | 32 | adantr | |
34 | ltmulgt12 | |
|
35 | 33 34 | syl | |
36 | 14 35 | mpbird | |
37 | df-2 | |
|
38 | 37 | breq1i | |
39 | 1zzd | |
|
40 | zltp1le | |
|
41 | 39 40 | mpancom | |
42 | 41 | bicomd | |
43 | 42 | adantl | |
44 | 43 | adantr | |
45 | 38 44 | bitrid | |
46 | 36 45 | mpbird | |
47 | eluz2 | |
|
48 | 8 9 46 47 | syl3anbrc | |
49 | 7 | a1i | |
50 | simpl | |
|
51 | 1zzd | |
|
52 | zltp1le | |
|
53 | 51 52 | mpancom | |
54 | 53 | biimpa | |
55 | 37 | breq1i | |
56 | 54 55 | sylibr | |
57 | 49 50 56 | 3jca | |
58 | 57 | ex | |
59 | 58 | adantr | |
60 | 3 4 59 | 3syl | |
61 | 1 60 | mpd | |
62 | eluz2 | |
|
63 | 61 62 | sylibr | |
64 | 63 | adantr | |
65 | 64 | adantr | |
66 | nprm | |
|
67 | 48 65 66 | syl2anc | |
68 | eleq1 | |
|
69 | 68 | notbid | |
70 | 69 | adantl | |
71 | 67 70 | mpbid | |
72 | 71 | rexlimdva2 | |
73 | 6 72 | sylbid | |
74 | 3 73 | mpd | |