Metamath Proof Explorer


Theorem dvdsnprmd

Description: If a number is divisible by an integer greater than 1 and less than the number, the number is not prime. (Contributed by AV, 24-Jul-2021)

Ref Expression
Hypotheses dvdsnprmd.g φ1<A
dvdsnprmd.l φA<N
dvdsnprmd.d φAN
Assertion dvdsnprmd φ¬N

Proof

Step Hyp Ref Expression
1 dvdsnprmd.g φ1<A
2 dvdsnprmd.l φA<N
3 dvdsnprmd.d φAN
4 dvdszrcl ANAN
5 divides ANANkkA=N
6 3 4 5 3syl φANkkA=N
7 2z 2
8 7 a1i φkkA=N2
9 simplr φkkA=Nk
10 2 adantr φkA<N
11 10 adantr φkkA=NA<N
12 breq2 kA=NA<kAA<N
13 12 adantl φkkA=NA<kAA<N
14 11 13 mpbird φkkA=NA<kA
15 zre AA
16 15 3ad2ant1 A1<AkA
17 zre kk
18 17 3ad2ant3 A1<Akk
19 0lt1 0<1
20 0red A0
21 1red A1
22 lttr 01A0<11<A0<A
23 20 21 15 22 syl3anc A0<11<A0<A
24 19 23 mpani A1<A0<A
25 24 imp A1<A0<A
26 25 3adant3 A1<Ak0<A
27 16 18 26 3jca A1<AkAk0<A
28 27 3exp A1<AkAk0<A
29 28 adantr AN1<AkAk0<A
30 3 4 29 3syl φ1<AkAk0<A
31 1 30 mpd φkAk0<A
32 31 imp φkAk0<A
33 32 adantr φkkA=NAk0<A
34 ltmulgt12 Ak0<A1<kA<kA
35 33 34 syl φkkA=N1<kA<kA
36 14 35 mpbird φkkA=N1<k
37 df-2 2=1+1
38 37 breq1i 2k1+1k
39 1zzd k1
40 zltp1le 1k1<k1+1k
41 39 40 mpancom k1<k1+1k
42 41 bicomd k1+1k1<k
43 42 adantl φk1+1k1<k
44 43 adantr φkkA=N1+1k1<k
45 38 44 bitrid φkkA=N2k1<k
46 36 45 mpbird φkkA=N2k
47 eluz2 k22k2k
48 8 9 46 47 syl3anbrc φkkA=Nk2
49 7 a1i A1<A2
50 simpl A1<AA
51 1zzd A1
52 zltp1le 1A1<A1+1A
53 51 52 mpancom A1<A1+1A
54 53 biimpa A1<A1+1A
55 37 breq1i 2A1+1A
56 54 55 sylibr A1<A2A
57 49 50 56 3jca A1<A2A2A
58 57 ex A1<A2A2A
59 58 adantr AN1<A2A2A
60 3 4 59 3syl φ1<A2A2A
61 1 60 mpd φ2A2A
62 eluz2 A22A2A
63 61 62 sylibr φA2
64 63 adantr φkA2
65 64 adantr φkkA=NA2
66 nprm k2A2¬kA
67 48 65 66 syl2anc φkkA=N¬kA
68 eleq1 kA=NkAN
69 68 notbid kA=N¬kA¬N
70 69 adantl φkkA=N¬kA¬N
71 67 70 mpbid φkkA=N¬N
72 71 rexlimdva2 φkkA=N¬N
73 6 72 sylbid φAN¬N
74 3 73 mpd φ¬N