Description: The N -th derivative of the M -th derivative of F is the same as the M + N -th derivative of F . (Contributed by Mario Carneiro, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dvnadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | |
|
2 | oveq2 | |
|
3 | 2 | fveq2d | |
4 | 1 3 | eqeq12d | |
5 | 4 | imbi2d | |
6 | fveq2 | |
|
7 | oveq2 | |
|
8 | 7 | fveq2d | |
9 | 6 8 | eqeq12d | |
10 | 9 | imbi2d | |
11 | fveq2 | |
|
12 | oveq2 | |
|
13 | 12 | fveq2d | |
14 | 11 13 | eqeq12d | |
15 | 14 | imbi2d | |
16 | fveq2 | |
|
17 | oveq2 | |
|
18 | 17 | fveq2d | |
19 | 16 18 | eqeq12d | |
20 | 19 | imbi2d | |
21 | recnprss | |
|
22 | 21 | ad2antrr | |
23 | ssidd | |
|
24 | cnex | |
|
25 | elpm2g | |
|
26 | 24 25 | mpan | |
27 | 26 | simplbda | |
28 | 24 | a1i | |
29 | simpl | |
|
30 | pmss12g | |
|
31 | 23 27 28 29 30 | syl22anc | |
32 | 31 | adantr | |
33 | dvnff | |
|
34 | 33 | ffvelcdmda | |
35 | 32 34 | sseldd | |
36 | dvn0 | |
|
37 | 22 35 36 | syl2anc | |
38 | nn0cn | |
|
39 | 38 | adantl | |
40 | 39 | addridd | |
41 | 40 | fveq2d | |
42 | 37 41 | eqtr4d | |
43 | oveq2 | |
|
44 | 22 | adantr | |
45 | 35 | adantr | |
46 | simpr | |
|
47 | dvnp1 | |
|
48 | 44 45 46 47 | syl3anc | |
49 | 39 | adantr | |
50 | nn0cn | |
|
51 | 50 | adantl | |
52 | 1cnd | |
|
53 | 49 51 52 | addassd | |
54 | 53 | fveq2d | |
55 | simpllr | |
|
56 | nn0addcl | |
|
57 | 56 | adantll | |
58 | dvnp1 | |
|
59 | 44 55 57 58 | syl3anc | |
60 | 54 59 | eqtr3d | |
61 | 48 60 | eqeq12d | |
62 | 43 61 | imbitrrid | |
63 | 62 | expcom | |
64 | 63 | a2d | |
65 | 5 10 15 20 42 64 | nn0ind | |
66 | 65 | com12 | |
67 | 66 | impr | |