Database
BASIC REAL AND COMPLEX ANALYSIS
Derivatives
Real and complex differentiation
Derivatives of functions of one complex or real variable
dvnres
Next ⟩
cpnfval
Metamath Proof Explorer
Ascii
Unicode
Theorem
dvnres
Description:
Multiple derivative version of
dvres3a
.
(Contributed by
Mario Carneiro
, 11-Feb-2015)
Ref
Expression
Assertion
dvnres
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
N
∈
ℕ
0
∧
dom
ℂ
D
n
F
N
=
dom
F
→
S
D
n
F
↾
S
N
=
ℂ
D
n
F
N
↾
S
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢
x
=
0
→
ℂ
D
n
F
x
=
ℂ
D
n
F
0
2
1
dmeqd
⊢
x
=
0
→
dom
ℂ
D
n
F
x
=
dom
ℂ
D
n
F
0
3
2
eqeq1d
⊢
x
=
0
→
dom
ℂ
D
n
F
x
=
dom
F
↔
dom
ℂ
D
n
F
0
=
dom
F
4
fveq2
⊢
x
=
0
→
S
D
n
F
↾
S
x
=
S
D
n
F
↾
S
0
5
1
reseq1d
⊢
x
=
0
→
ℂ
D
n
F
x
↾
S
=
ℂ
D
n
F
0
↾
S
6
4
5
eqeq12d
⊢
x
=
0
→
S
D
n
F
↾
S
x
=
ℂ
D
n
F
x
↾
S
↔
S
D
n
F
↾
S
0
=
ℂ
D
n
F
0
↾
S
7
3
6
imbi12d
⊢
x
=
0
→
dom
ℂ
D
n
F
x
=
dom
F
→
S
D
n
F
↾
S
x
=
ℂ
D
n
F
x
↾
S
↔
dom
ℂ
D
n
F
0
=
dom
F
→
S
D
n
F
↾
S
0
=
ℂ
D
n
F
0
↾
S
8
7
imbi2d
⊢
x
=
0
→
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
dom
ℂ
D
n
F
x
=
dom
F
→
S
D
n
F
↾
S
x
=
ℂ
D
n
F
x
↾
S
↔
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
dom
ℂ
D
n
F
0
=
dom
F
→
S
D
n
F
↾
S
0
=
ℂ
D
n
F
0
↾
S
9
fveq2
⊢
x
=
n
→
ℂ
D
n
F
x
=
ℂ
D
n
F
n
10
9
dmeqd
⊢
x
=
n
→
dom
ℂ
D
n
F
x
=
dom
ℂ
D
n
F
n
11
10
eqeq1d
⊢
x
=
n
→
dom
ℂ
D
n
F
x
=
dom
F
↔
dom
ℂ
D
n
F
n
=
dom
F
12
fveq2
⊢
x
=
n
→
S
D
n
F
↾
S
x
=
S
D
n
F
↾
S
n
13
9
reseq1d
⊢
x
=
n
→
ℂ
D
n
F
x
↾
S
=
ℂ
D
n
F
n
↾
S
14
12
13
eqeq12d
⊢
x
=
n
→
S
D
n
F
↾
S
x
=
ℂ
D
n
F
x
↾
S
↔
S
D
n
F
↾
S
n
=
ℂ
D
n
F
n
↾
S
15
11
14
imbi12d
⊢
x
=
n
→
dom
ℂ
D
n
F
x
=
dom
F
→
S
D
n
F
↾
S
x
=
ℂ
D
n
F
x
↾
S
↔
dom
ℂ
D
n
F
n
=
dom
F
→
S
D
n
F
↾
S
n
=
ℂ
D
n
F
n
↾
S
16
15
imbi2d
⊢
x
=
n
→
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
dom
ℂ
D
n
F
x
=
dom
F
→
S
D
n
F
↾
S
x
=
ℂ
D
n
F
x
↾
S
↔
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
dom
ℂ
D
n
F
n
=
dom
F
→
S
D
n
F
↾
S
n
=
ℂ
D
n
F
n
↾
S
17
fveq2
⊢
x
=
n
+
1
→
ℂ
D
n
F
x
=
ℂ
D
n
F
n
+
1
18
17
dmeqd
⊢
x
=
n
+
1
→
dom
ℂ
D
n
F
x
=
dom
ℂ
D
n
F
n
+
1
19
18
eqeq1d
⊢
x
=
n
+
1
→
dom
ℂ
D
n
F
x
=
dom
F
↔
dom
ℂ
D
n
F
n
+
1
=
dom
F
20
fveq2
⊢
x
=
n
+
1
→
S
D
n
F
↾
S
x
=
S
D
n
F
↾
S
n
+
1
21
17
reseq1d
⊢
x
=
n
+
1
→
ℂ
D
n
F
x
↾
S
=
ℂ
D
n
F
n
+
1
↾
S
22
20
21
eqeq12d
⊢
x
=
n
+
1
→
S
D
n
F
↾
S
x
=
ℂ
D
n
F
x
↾
S
↔
S
D
n
F
↾
S
n
+
1
=
ℂ
D
n
F
n
+
1
↾
S
23
19
22
imbi12d
⊢
x
=
n
+
1
→
dom
ℂ
D
n
F
x
=
dom
F
→
S
D
n
F
↾
S
x
=
ℂ
D
n
F
x
↾
S
↔
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
S
D
n
F
↾
S
n
+
1
=
ℂ
D
n
F
n
+
1
↾
S
24
23
imbi2d
⊢
x
=
n
+
1
→
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
dom
ℂ
D
n
F
x
=
dom
F
→
S
D
n
F
↾
S
x
=
ℂ
D
n
F
x
↾
S
↔
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
S
D
n
F
↾
S
n
+
1
=
ℂ
D
n
F
n
+
1
↾
S
25
fveq2
⊢
x
=
N
→
ℂ
D
n
F
x
=
ℂ
D
n
F
N
26
25
dmeqd
⊢
x
=
N
→
dom
ℂ
D
n
F
x
=
dom
ℂ
D
n
F
N
27
26
eqeq1d
⊢
x
=
N
→
dom
ℂ
D
n
F
x
=
dom
F
↔
dom
ℂ
D
n
F
N
=
dom
F
28
fveq2
⊢
x
=
N
→
S
D
n
F
↾
S
x
=
S
D
n
F
↾
S
N
29
25
reseq1d
⊢
x
=
N
→
ℂ
D
n
F
x
↾
S
=
ℂ
D
n
F
N
↾
S
30
28
29
eqeq12d
⊢
x
=
N
→
S
D
n
F
↾
S
x
=
ℂ
D
n
F
x
↾
S
↔
S
D
n
F
↾
S
N
=
ℂ
D
n
F
N
↾
S
31
27
30
imbi12d
⊢
x
=
N
→
dom
ℂ
D
n
F
x
=
dom
F
→
S
D
n
F
↾
S
x
=
ℂ
D
n
F
x
↾
S
↔
dom
ℂ
D
n
F
N
=
dom
F
→
S
D
n
F
↾
S
N
=
ℂ
D
n
F
N
↾
S
32
31
imbi2d
⊢
x
=
N
→
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
dom
ℂ
D
n
F
x
=
dom
F
→
S
D
n
F
↾
S
x
=
ℂ
D
n
F
x
↾
S
↔
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
dom
ℂ
D
n
F
N
=
dom
F
→
S
D
n
F
↾
S
N
=
ℂ
D
n
F
N
↾
S
33
recnprss
⊢
S
∈
ℝ
ℂ
→
S
⊆
ℂ
34
33
adantr
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
S
⊆
ℂ
35
pmresg
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
F
↾
S
∈
ℂ
↑
𝑝𝑚
S
36
dvn0
⊢
S
⊆
ℂ
∧
F
↾
S
∈
ℂ
↑
𝑝𝑚
S
→
S
D
n
F
↾
S
0
=
F
↾
S
37
34
35
36
syl2anc
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
S
D
n
F
↾
S
0
=
F
↾
S
38
ssidd
⊢
S
∈
ℝ
ℂ
→
ℂ
⊆
ℂ
39
dvn0
⊢
ℂ
⊆
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
ℂ
D
n
F
0
=
F
40
38
39
sylan
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
ℂ
D
n
F
0
=
F
41
40
reseq1d
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
ℂ
D
n
F
0
↾
S
=
F
↾
S
42
37
41
eqtr4d
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
S
D
n
F
↾
S
0
=
ℂ
D
n
F
0
↾
S
43
42
a1d
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
dom
ℂ
D
n
F
0
=
dom
F
→
S
D
n
F
↾
S
0
=
ℂ
D
n
F
0
↾
S
44
cnelprrecn
⊢
ℂ
∈
ℝ
ℂ
45
simplr
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
F
∈
ℂ
↑
𝑝𝑚
ℂ
46
simprl
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
n
∈
ℕ
0
47
dvnbss
⊢
ℂ
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
→
dom
ℂ
D
n
F
n
⊆
dom
F
48
44
45
46
47
mp3an2i
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
ℂ
D
n
F
n
⊆
dom
F
49
simprr
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
ℂ
D
n
F
n
+
1
=
dom
F
50
ssidd
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
ℂ
⊆
ℂ
51
dvnp1
⊢
ℂ
⊆
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
→
ℂ
D
n
F
n
+
1
=
ℂ
D
ℂ
D
n
F
n
52
50
45
46
51
syl3anc
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
ℂ
D
n
F
n
+
1
=
ℂ
D
ℂ
D
n
F
n
53
52
dmeqd
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
ℂ
D
n
F
n
+
1
=
dom
ℂ
D
n
F
n
ℂ
′
54
49
53
eqtr3d
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
F
=
dom
ℂ
D
n
F
n
ℂ
′
55
dvnf
⊢
ℂ
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
→
ℂ
D
n
F
n
:
dom
ℂ
D
n
F
n
⟶
ℂ
56
44
45
46
55
mp3an2i
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
ℂ
D
n
F
n
:
dom
ℂ
D
n
F
n
⟶
ℂ
57
cnex
⊢
ℂ
∈
V
58
57
57
elpm2
⊢
F
∈
ℂ
↑
𝑝𝑚
ℂ
↔
F
:
dom
F
⟶
ℂ
∧
dom
F
⊆
ℂ
59
58
simprbi
⊢
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
dom
F
⊆
ℂ
60
45
59
syl
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
F
⊆
ℂ
61
48
60
sstrd
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
ℂ
D
n
F
n
⊆
ℂ
62
50
56
61
dvbss
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
ℂ
D
n
F
n
ℂ
′
⊆
dom
ℂ
D
n
F
n
63
54
62
eqsstrd
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
F
⊆
dom
ℂ
D
n
F
n
64
48
63
eqssd
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
ℂ
D
n
F
n
=
dom
F
65
64
expr
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
→
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
ℂ
D
n
F
n
=
dom
F
66
65
imim1d
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
→
dom
ℂ
D
n
F
n
=
dom
F
→
S
D
n
F
↾
S
n
=
ℂ
D
n
F
n
↾
S
→
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
S
D
n
F
↾
S
n
=
ℂ
D
n
F
n
↾
S
67
oveq2
⊢
S
D
n
F
↾
S
n
=
ℂ
D
n
F
n
↾
S
→
S
D
S
D
n
F
↾
S
n
=
S
D
ℂ
D
n
F
n
↾
S
68
34
adantr
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
S
⊆
ℂ
69
35
adantr
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
F
↾
S
∈
ℂ
↑
𝑝𝑚
S
70
dvnp1
⊢
S
⊆
ℂ
∧
F
↾
S
∈
ℂ
↑
𝑝𝑚
S
∧
n
∈
ℕ
0
→
S
D
n
F
↾
S
n
+
1
=
S
D
S
D
n
F
↾
S
n
71
68
69
46
70
syl3anc
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
S
D
n
F
↾
S
n
+
1
=
S
D
S
D
n
F
↾
S
n
72
52
reseq1d
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
ℂ
D
n
F
n
+
1
↾
S
=
ℂ
D
n
F
n
ℂ
′
↾
S
73
simpll
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
S
∈
ℝ
ℂ
74
eqid
⊢
TopOpen
ℂ
fld
=
TopOpen
ℂ
fld
75
74
cnfldtop
⊢
TopOpen
ℂ
fld
∈
Top
76
unicntop
⊢
ℂ
=
⋃
TopOpen
ℂ
fld
77
76
ntrss2
⊢
TopOpen
ℂ
fld
∈
Top
∧
dom
ℂ
D
n
F
n
⊆
ℂ
→
int
TopOpen
ℂ
fld
dom
ℂ
D
n
F
n
⊆
dom
ℂ
D
n
F
n
78
75
61
77
sylancr
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
int
TopOpen
ℂ
fld
dom
ℂ
D
n
F
n
⊆
dom
ℂ
D
n
F
n
79
74
cnfldtopon
⊢
TopOpen
ℂ
fld
∈
TopOn
ℂ
80
79
toponrestid
⊢
TopOpen
ℂ
fld
=
TopOpen
ℂ
fld
↾
𝑡
ℂ
81
50
56
61
80
74
dvbssntr
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
ℂ
D
n
F
n
ℂ
′
⊆
int
TopOpen
ℂ
fld
dom
ℂ
D
n
F
n
82
54
81
eqsstrd
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
F
⊆
int
TopOpen
ℂ
fld
dom
ℂ
D
n
F
n
83
48
82
sstrd
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
ℂ
D
n
F
n
⊆
int
TopOpen
ℂ
fld
dom
ℂ
D
n
F
n
84
78
83
eqssd
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
int
TopOpen
ℂ
fld
dom
ℂ
D
n
F
n
=
dom
ℂ
D
n
F
n
85
76
isopn3
⊢
TopOpen
ℂ
fld
∈
Top
∧
dom
ℂ
D
n
F
n
⊆
ℂ
→
dom
ℂ
D
n
F
n
∈
TopOpen
ℂ
fld
↔
int
TopOpen
ℂ
fld
dom
ℂ
D
n
F
n
=
dom
ℂ
D
n
F
n
86
75
61
85
sylancr
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
ℂ
D
n
F
n
∈
TopOpen
ℂ
fld
↔
int
TopOpen
ℂ
fld
dom
ℂ
D
n
F
n
=
dom
ℂ
D
n
F
n
87
84
86
mpbird
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
ℂ
D
n
F
n
∈
TopOpen
ℂ
fld
88
64
54
eqtr2d
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
dom
ℂ
D
n
F
n
ℂ
′
=
dom
ℂ
D
n
F
n
89
74
dvres3a
⊢
S
∈
ℝ
ℂ
∧
ℂ
D
n
F
n
:
dom
ℂ
D
n
F
n
⟶
ℂ
∧
dom
ℂ
D
n
F
n
∈
TopOpen
ℂ
fld
∧
dom
ℂ
D
n
F
n
ℂ
′
=
dom
ℂ
D
n
F
n
→
S
D
ℂ
D
n
F
n
↾
S
=
ℂ
D
n
F
n
ℂ
′
↾
S
90
73
56
87
88
89
syl22anc
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
S
D
ℂ
D
n
F
n
↾
S
=
ℂ
D
n
F
n
ℂ
′
↾
S
91
72
90
eqtr4d
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
ℂ
D
n
F
n
+
1
↾
S
=
S
D
ℂ
D
n
F
n
↾
S
92
71
91
eqeq12d
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
S
D
n
F
↾
S
n
+
1
=
ℂ
D
n
F
n
+
1
↾
S
↔
S
D
S
D
n
F
↾
S
n
=
S
D
ℂ
D
n
F
n
↾
S
93
67
92
imbitrrid
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
n
∈
ℕ
0
∧
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
S
D
n
F
↾
S
n
=
ℂ
D
n
F
n
↾
S
→
S
D
n
F
↾
S
n
+
1
=
ℂ
D
n
F
n
+
1
↾
S
94
66
93
animpimp2impd
⊢
n
∈
ℕ
0
→
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
dom
ℂ
D
n
F
n
=
dom
F
→
S
D
n
F
↾
S
n
=
ℂ
D
n
F
n
↾
S
→
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
dom
ℂ
D
n
F
n
+
1
=
dom
F
→
S
D
n
F
↾
S
n
+
1
=
ℂ
D
n
F
n
+
1
↾
S
95
8
16
24
32
43
94
nn0ind
⊢
N
∈
ℕ
0
→
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
dom
ℂ
D
n
F
N
=
dom
F
→
S
D
n
F
↾
S
N
=
ℂ
D
n
F
N
↾
S
96
95
com12
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
→
N
∈
ℕ
0
→
dom
ℂ
D
n
F
N
=
dom
F
→
S
D
n
F
↾
S
N
=
ℂ
D
n
F
N
↾
S
97
96
3impia
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
N
∈
ℕ
0
→
dom
ℂ
D
n
F
N
=
dom
F
→
S
D
n
F
↾
S
N
=
ℂ
D
n
F
N
↾
S
98
97
imp
⊢
S
∈
ℝ
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
N
∈
ℕ
0
∧
dom
ℂ
D
n
F
N
=
dom
F
→
S
D
n
F
↾
S
N
=
ℂ
D
n
F
N
↾
S