Metamath Proof Explorer


Theorem dvnres

Description: Multiple derivative version of dvres3a . (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion dvnres SF𝑝𝑚N0domDnFN=domFSDnFSN=DnFNS

Proof

Step Hyp Ref Expression
1 fveq2 x=0DnFx=DnF0
2 1 dmeqd x=0domDnFx=domDnF0
3 2 eqeq1d x=0domDnFx=domFdomDnF0=domF
4 fveq2 x=0SDnFSx=SDnFS0
5 1 reseq1d x=0DnFxS=DnF0S
6 4 5 eqeq12d x=0SDnFSx=DnFxSSDnFS0=DnF0S
7 3 6 imbi12d x=0domDnFx=domFSDnFSx=DnFxSdomDnF0=domFSDnFS0=DnF0S
8 7 imbi2d x=0SF𝑝𝑚domDnFx=domFSDnFSx=DnFxSSF𝑝𝑚domDnF0=domFSDnFS0=DnF0S
9 fveq2 x=nDnFx=DnFn
10 9 dmeqd x=ndomDnFx=domDnFn
11 10 eqeq1d x=ndomDnFx=domFdomDnFn=domF
12 fveq2 x=nSDnFSx=SDnFSn
13 9 reseq1d x=nDnFxS=DnFnS
14 12 13 eqeq12d x=nSDnFSx=DnFxSSDnFSn=DnFnS
15 11 14 imbi12d x=ndomDnFx=domFSDnFSx=DnFxSdomDnFn=domFSDnFSn=DnFnS
16 15 imbi2d x=nSF𝑝𝑚domDnFx=domFSDnFSx=DnFxSSF𝑝𝑚domDnFn=domFSDnFSn=DnFnS
17 fveq2 x=n+1DnFx=DnFn+1
18 17 dmeqd x=n+1domDnFx=domDnFn+1
19 18 eqeq1d x=n+1domDnFx=domFdomDnFn+1=domF
20 fveq2 x=n+1SDnFSx=SDnFSn+1
21 17 reseq1d x=n+1DnFxS=DnFn+1S
22 20 21 eqeq12d x=n+1SDnFSx=DnFxSSDnFSn+1=DnFn+1S
23 19 22 imbi12d x=n+1domDnFx=domFSDnFSx=DnFxSdomDnFn+1=domFSDnFSn+1=DnFn+1S
24 23 imbi2d x=n+1SF𝑝𝑚domDnFx=domFSDnFSx=DnFxSSF𝑝𝑚domDnFn+1=domFSDnFSn+1=DnFn+1S
25 fveq2 x=NDnFx=DnFN
26 25 dmeqd x=NdomDnFx=domDnFN
27 26 eqeq1d x=NdomDnFx=domFdomDnFN=domF
28 fveq2 x=NSDnFSx=SDnFSN
29 25 reseq1d x=NDnFxS=DnFNS
30 28 29 eqeq12d x=NSDnFSx=DnFxSSDnFSN=DnFNS
31 27 30 imbi12d x=NdomDnFx=domFSDnFSx=DnFxSdomDnFN=domFSDnFSN=DnFNS
32 31 imbi2d x=NSF𝑝𝑚domDnFx=domFSDnFSx=DnFxSSF𝑝𝑚domDnFN=domFSDnFSN=DnFNS
33 recnprss SS
34 33 adantr SF𝑝𝑚S
35 pmresg SF𝑝𝑚FS𝑝𝑚S
36 dvn0 SFS𝑝𝑚SSDnFS0=FS
37 34 35 36 syl2anc SF𝑝𝑚SDnFS0=FS
38 ssidd S
39 dvn0 F𝑝𝑚DnF0=F
40 38 39 sylan SF𝑝𝑚DnF0=F
41 40 reseq1d SF𝑝𝑚DnF0S=FS
42 37 41 eqtr4d SF𝑝𝑚SDnFS0=DnF0S
43 42 a1d SF𝑝𝑚domDnF0=domFSDnFS0=DnF0S
44 cnelprrecn
45 simplr SF𝑝𝑚n0domDnFn+1=domFF𝑝𝑚
46 simprl SF𝑝𝑚n0domDnFn+1=domFn0
47 dvnbss F𝑝𝑚n0domDnFndomF
48 44 45 46 47 mp3an2i SF𝑝𝑚n0domDnFn+1=domFdomDnFndomF
49 simprr SF𝑝𝑚n0domDnFn+1=domFdomDnFn+1=domF
50 ssidd SF𝑝𝑚n0domDnFn+1=domF
51 dvnp1 F𝑝𝑚n0DnFn+1=DDnFn
52 50 45 46 51 syl3anc SF𝑝𝑚n0domDnFn+1=domFDnFn+1=DDnFn
53 52 dmeqd SF𝑝𝑚n0domDnFn+1=domFdomDnFn+1=domDnFn
54 49 53 eqtr3d SF𝑝𝑚n0domDnFn+1=domFdomF=domDnFn
55 dvnf F𝑝𝑚n0DnFn:domDnFn
56 44 45 46 55 mp3an2i SF𝑝𝑚n0domDnFn+1=domFDnFn:domDnFn
57 cnex V
58 57 57 elpm2 F𝑝𝑚F:domFdomF
59 58 simprbi F𝑝𝑚domF
60 45 59 syl SF𝑝𝑚n0domDnFn+1=domFdomF
61 48 60 sstrd SF𝑝𝑚n0domDnFn+1=domFdomDnFn
62 50 56 61 dvbss SF𝑝𝑚n0domDnFn+1=domFdomDnFndomDnFn
63 54 62 eqsstrd SF𝑝𝑚n0domDnFn+1=domFdomFdomDnFn
64 48 63 eqssd SF𝑝𝑚n0domDnFn+1=domFdomDnFn=domF
65 64 expr SF𝑝𝑚n0domDnFn+1=domFdomDnFn=domF
66 65 imim1d SF𝑝𝑚n0domDnFn=domFSDnFSn=DnFnSdomDnFn+1=domFSDnFSn=DnFnS
67 oveq2 SDnFSn=DnFnSSDSDnFSn=SDDnFnS
68 34 adantr SF𝑝𝑚n0domDnFn+1=domFS
69 35 adantr SF𝑝𝑚n0domDnFn+1=domFFS𝑝𝑚S
70 dvnp1 SFS𝑝𝑚Sn0SDnFSn+1=SDSDnFSn
71 68 69 46 70 syl3anc SF𝑝𝑚n0domDnFn+1=domFSDnFSn+1=SDSDnFSn
72 52 reseq1d SF𝑝𝑚n0domDnFn+1=domFDnFn+1S=DnFnS
73 simpll SF𝑝𝑚n0domDnFn+1=domFS
74 eqid TopOpenfld=TopOpenfld
75 74 cnfldtop TopOpenfldTop
76 unicntop =TopOpenfld
77 76 ntrss2 TopOpenfldTopdomDnFnintTopOpenflddomDnFndomDnFn
78 75 61 77 sylancr SF𝑝𝑚n0domDnFn+1=domFintTopOpenflddomDnFndomDnFn
79 74 cnfldtopon TopOpenfldTopOn
80 79 toponrestid TopOpenfld=TopOpenfld𝑡
81 50 56 61 80 74 dvbssntr SF𝑝𝑚n0domDnFn+1=domFdomDnFnintTopOpenflddomDnFn
82 54 81 eqsstrd SF𝑝𝑚n0domDnFn+1=domFdomFintTopOpenflddomDnFn
83 48 82 sstrd SF𝑝𝑚n0domDnFn+1=domFdomDnFnintTopOpenflddomDnFn
84 78 83 eqssd SF𝑝𝑚n0domDnFn+1=domFintTopOpenflddomDnFn=domDnFn
85 76 isopn3 TopOpenfldTopdomDnFndomDnFnTopOpenfldintTopOpenflddomDnFn=domDnFn
86 75 61 85 sylancr SF𝑝𝑚n0domDnFn+1=domFdomDnFnTopOpenfldintTopOpenflddomDnFn=domDnFn
87 84 86 mpbird SF𝑝𝑚n0domDnFn+1=domFdomDnFnTopOpenfld
88 64 54 eqtr2d SF𝑝𝑚n0domDnFn+1=domFdomDnFn=domDnFn
89 74 dvres3a SDnFn:domDnFndomDnFnTopOpenflddomDnFn=domDnFnSDDnFnS=DnFnS
90 73 56 87 88 89 syl22anc SF𝑝𝑚n0domDnFn+1=domFSDDnFnS=DnFnS
91 72 90 eqtr4d SF𝑝𝑚n0domDnFn+1=domFDnFn+1S=SDDnFnS
92 71 91 eqeq12d SF𝑝𝑚n0domDnFn+1=domFSDnFSn+1=DnFn+1SSDSDnFSn=SDDnFnS
93 67 92 imbitrrid SF𝑝𝑚n0domDnFn+1=domFSDnFSn=DnFnSSDnFSn+1=DnFn+1S
94 66 93 animpimp2impd n0SF𝑝𝑚domDnFn=domFSDnFSn=DnFnSSF𝑝𝑚domDnFn+1=domFSDnFSn+1=DnFn+1S
95 8 16 24 32 43 94 nn0ind N0SF𝑝𝑚domDnFN=domFSDnFSN=DnFNS
96 95 com12 SF𝑝𝑚N0domDnFN=domFSDnFSN=DnFNS
97 96 3impia SF𝑝𝑚N0domDnFN=domFSDnFSN=DnFNS
98 97 imp SF𝑝𝑚N0domDnFN=domFSDnFSN=DnFNS