| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyf |  | 
						
							| 2 | 1 | adantl |  | 
						
							| 3 | 2 | feqmptd |  | 
						
							| 4 |  | simplr |  | 
						
							| 5 |  | dgrcl |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 | 6 | nn0zd |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 |  | uzid |  | 
						
							| 10 |  | peano2uz |  | 
						
							| 11 | 8 9 10 | 3syl |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 13 14 | coeid3 |  | 
						
							| 16 | 4 11 12 15 | syl3anc |  | 
						
							| 17 | 16 | mpteq2dva |  | 
						
							| 18 | 3 17 | eqtrd |  | 
						
							| 19 | 6 | nn0cnd |  | 
						
							| 20 |  | ax-1cn |  | 
						
							| 21 |  | pncan |  | 
						
							| 22 | 19 20 21 | sylancl |  | 
						
							| 23 | 22 | eqcomd |  | 
						
							| 24 | 23 | oveq2d |  | 
						
							| 25 | 24 | sumeq1d |  | 
						
							| 26 | 25 | mpteq2dv |  | 
						
							| 27 | 13 | coef3 |  | 
						
							| 28 | 27 | adantl |  | 
						
							| 29 |  | oveq1 |  | 
						
							| 30 |  | fvoveq1 |  | 
						
							| 31 | 29 30 | oveq12d |  | 
						
							| 32 | 31 | cbvmptv |  | 
						
							| 33 |  | peano2nn0 |  | 
						
							| 34 | 6 33 | syl |  | 
						
							| 35 | 18 26 28 32 34 | dvply1 |  | 
						
							| 36 |  | cnfldbas |  | 
						
							| 37 | 36 | subrgss |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 |  | elfznn0 |  | 
						
							| 40 |  | simpll |  | 
						
							| 41 |  | zsssubrg |  | 
						
							| 42 | 41 | ad2antrr |  | 
						
							| 43 |  | peano2nn0 |  | 
						
							| 44 | 43 | adantl |  | 
						
							| 45 | 44 | nn0zd |  | 
						
							| 46 | 42 45 | sseldd |  | 
						
							| 47 |  | simplr |  | 
						
							| 48 |  | subrgsubg |  | 
						
							| 49 |  | cnfld0 |  | 
						
							| 50 | 49 | subg0cl |  | 
						
							| 51 | 48 50 | syl |  | 
						
							| 52 | 51 | ad2antrr |  | 
						
							| 53 | 13 | coef2 |  | 
						
							| 54 | 47 52 53 | syl2anc |  | 
						
							| 55 | 54 44 | ffvelcdmd |  | 
						
							| 56 |  | cnfldmul |  | 
						
							| 57 | 56 | subrgmcl |  | 
						
							| 58 | 40 46 55 57 | syl3anc |  | 
						
							| 59 | 58 | fmpttd |  | 
						
							| 60 | 59 | ffvelcdmda |  | 
						
							| 61 | 39 60 | sylan2 |  | 
						
							| 62 | 38 6 61 | elplyd |  | 
						
							| 63 | 35 62 | eqeltrd |  |