| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvply1.f |
|
| 2 |
|
dvply1.g |
|
| 3 |
|
dvply1.a |
|
| 4 |
|
dvply1.b |
|
| 5 |
|
dvply1.n |
|
| 6 |
1
|
oveq2d |
|
| 7 |
|
eqid |
|
| 8 |
7
|
cnfldtopon |
|
| 9 |
8
|
toponrestid |
|
| 10 |
|
cnelprrecn |
|
| 11 |
10
|
a1i |
|
| 12 |
7
|
cnfldtop |
|
| 13 |
|
unicntop |
|
| 14 |
13
|
topopn |
|
| 15 |
12 14
|
mp1i |
|
| 16 |
|
fzfid |
|
| 17 |
|
elfznn0 |
|
| 18 |
|
ffvelcdm |
|
| 19 |
3 17 18
|
syl2an |
|
| 20 |
19
|
adantr |
|
| 21 |
|
simpr |
|
| 22 |
17
|
ad2antlr |
|
| 23 |
21 22
|
expcld |
|
| 24 |
20 23
|
mulcld |
|
| 25 |
24
|
3impa |
|
| 26 |
19
|
3adant3 |
|
| 27 |
|
0cnd |
|
| 28 |
|
simpl2 |
|
| 29 |
28 17
|
syl |
|
| 30 |
29
|
nn0cnd |
|
| 31 |
|
simpl3 |
|
| 32 |
|
simpr |
|
| 33 |
|
elnn0 |
|
| 34 |
29 33
|
sylib |
|
| 35 |
|
orel2 |
|
| 36 |
32 34 35
|
sylc |
|
| 37 |
|
nnm1nn0 |
|
| 38 |
36 37
|
syl |
|
| 39 |
31 38
|
expcld |
|
| 40 |
30 39
|
mulcld |
|
| 41 |
27 40
|
ifclda |
|
| 42 |
26 41
|
mulcld |
|
| 43 |
10
|
a1i |
|
| 44 |
|
c0ex |
|
| 45 |
|
ovex |
|
| 46 |
44 45
|
ifex |
|
| 47 |
46
|
a1i |
|
| 48 |
17
|
adantl |
|
| 49 |
|
dvexp2 |
|
| 50 |
48 49
|
syl |
|
| 51 |
43 23 47 50 19
|
dvmptcmul |
|
| 52 |
9 7 11 15 16 25 42 51
|
dvmptfsum |
|
| 53 |
|
elfznn |
|
| 54 |
53
|
nnne0d |
|
| 55 |
54
|
neneqd |
|
| 56 |
55
|
adantl |
|
| 57 |
56
|
iffalsed |
|
| 58 |
57
|
oveq2d |
|
| 59 |
58
|
sumeq2dv |
|
| 60 |
|
1eluzge0 |
|
| 61 |
|
fzss1 |
|
| 62 |
60 61
|
mp1i |
|
| 63 |
3
|
adantr |
|
| 64 |
53
|
nnnn0d |
|
| 65 |
63 64 18
|
syl2an |
|
| 66 |
54
|
adantl |
|
| 67 |
66
|
neneqd |
|
| 68 |
67
|
iffalsed |
|
| 69 |
64
|
adantl |
|
| 70 |
69
|
nn0cnd |
|
| 71 |
|
simplr |
|
| 72 |
53 37
|
syl |
|
| 73 |
72
|
adantl |
|
| 74 |
71 73
|
expcld |
|
| 75 |
70 74
|
mulcld |
|
| 76 |
68 75
|
eqeltrd |
|
| 77 |
65 76
|
mulcld |
|
| 78 |
|
eldifn |
|
| 79 |
|
0p1e1 |
|
| 80 |
79
|
oveq1i |
|
| 81 |
80
|
eleq2i |
|
| 82 |
78 81
|
sylnibr |
|
| 83 |
82
|
adantl |
|
| 84 |
|
eldifi |
|
| 85 |
84
|
adantl |
|
| 86 |
|
nn0uz |
|
| 87 |
5 86
|
eleqtrdi |
|
| 88 |
87
|
ad2antrr |
|
| 89 |
|
elfzp12 |
|
| 90 |
88 89
|
syl |
|
| 91 |
85 90
|
mpbid |
|
| 92 |
|
orel2 |
|
| 93 |
83 91 92
|
sylc |
|
| 94 |
93
|
iftrued |
|
| 95 |
94
|
oveq2d |
|
| 96 |
63 17 18
|
syl2an |
|
| 97 |
96
|
mul01d |
|
| 98 |
84 97
|
sylan2 |
|
| 99 |
95 98
|
eqtrd |
|
| 100 |
|
fzfid |
|
| 101 |
62 77 99 100
|
fsumss |
|
| 102 |
|
elfznn0 |
|
| 103 |
102
|
adantl |
|
| 104 |
103
|
nn0cnd |
|
| 105 |
|
ax-1cn |
|
| 106 |
|
pncan |
|
| 107 |
104 105 106
|
sylancl |
|
| 108 |
107
|
oveq2d |
|
| 109 |
108
|
oveq2d |
|
| 110 |
109
|
oveq2d |
|
| 111 |
3
|
ad2antrr |
|
| 112 |
|
peano2nn0 |
|
| 113 |
102 112
|
syl |
|
| 114 |
113
|
adantl |
|
| 115 |
111 114
|
ffvelcdmd |
|
| 116 |
114
|
nn0cnd |
|
| 117 |
|
simplr |
|
| 118 |
117 103
|
expcld |
|
| 119 |
115 116 118
|
mulassd |
|
| 120 |
115 116
|
mulcomd |
|
| 121 |
120
|
oveq1d |
|
| 122 |
110 119 121
|
3eqtr2d |
|
| 123 |
122
|
sumeq2dv |
|
| 124 |
|
1m1e0 |
|
| 125 |
124
|
oveq1i |
|
| 126 |
125
|
sumeq1i |
|
| 127 |
|
oveq1 |
|
| 128 |
|
fvoveq1 |
|
| 129 |
127 128
|
oveq12d |
|
| 130 |
|
oveq2 |
|
| 131 |
129 130
|
oveq12d |
|
| 132 |
131
|
cbvsumv |
|
| 133 |
123 126 132
|
3eqtr4g |
|
| 134 |
|
1zzd |
|
| 135 |
5
|
adantr |
|
| 136 |
135
|
nn0zd |
|
| 137 |
65 75
|
mulcld |
|
| 138 |
|
fveq2 |
|
| 139 |
|
id |
|
| 140 |
|
oveq1 |
|
| 141 |
140
|
oveq2d |
|
| 142 |
139 141
|
oveq12d |
|
| 143 |
138 142
|
oveq12d |
|
| 144 |
134 134 136 137 143
|
fsumshftm |
|
| 145 |
|
elfznn0 |
|
| 146 |
145
|
adantl |
|
| 147 |
|
ovex |
|
| 148 |
4
|
fvmpt2 |
|
| 149 |
146 147 148
|
sylancl |
|
| 150 |
149
|
oveq1d |
|
| 151 |
150
|
sumeq2dv |
|
| 152 |
133 144 151
|
3eqtr4d |
|
| 153 |
59 101 152
|
3eqtr3d |
|
| 154 |
153
|
mpteq2dva |
|
| 155 |
154 2
|
eqtr4d |
|
| 156 |
6 52 155
|
3eqtrd |
|