Step |
Hyp |
Ref |
Expression |
1 |
|
dvply1.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
2 |
|
dvply1.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
3 |
|
dvply1.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
4 |
|
dvply1.b |
⊢ 𝐵 = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ) |
5 |
|
dvply1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
1
|
oveq2d |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( ℂ D ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
7 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
8 |
7
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
9 |
8
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
10 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
11 |
10
|
a1i |
⊢ ( 𝜑 → ℂ ∈ { ℝ , ℂ } ) |
12 |
7
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
13 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
14 |
13
|
topopn |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
15 |
12 14
|
mp1i |
⊢ ( 𝜑 → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
16 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ Fin ) |
17 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
18 |
|
ffvelrn |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
19 |
3 17 18
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ℂ ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) |
22 |
17
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ℂ ) → 𝑘 ∈ ℕ0 ) |
23 |
21 22
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ℂ ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
24 |
20 23
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
25 |
24
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
26 |
19
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
27 |
|
0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 = 0 ) → 0 ∈ ℂ ) |
28 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
29 |
28 17
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → 𝑘 ∈ ℕ0 ) |
30 |
29
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → 𝑘 ∈ ℂ ) |
31 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → 𝑧 ∈ ℂ ) |
32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → ¬ 𝑘 = 0 ) |
33 |
|
elnn0 |
⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) |
34 |
29 33
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) |
35 |
|
orel2 |
⊢ ( ¬ 𝑘 = 0 → ( ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) → 𝑘 ∈ ℕ ) ) |
36 |
32 34 35
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → 𝑘 ∈ ℕ ) |
37 |
|
nnm1nn0 |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 − 1 ) ∈ ℕ0 ) |
38 |
36 37
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
39 |
31 38
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → ( 𝑧 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
40 |
30 39
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) ∧ ¬ 𝑘 = 0 ) → ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
41 |
27 40
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) → if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ∈ ℂ ) |
42 |
26 41
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ∈ ℂ ) |
43 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ℂ ∈ { ℝ , ℂ } ) |
44 |
|
c0ex |
⊢ 0 ∈ V |
45 |
|
ovex |
⊢ ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ∈ V |
46 |
44 45
|
ifex |
⊢ if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ∈ V |
47 |
46
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑧 ∈ ℂ ) → if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ∈ V ) |
48 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
49 |
|
dvexp2 |
⊢ ( 𝑘 ∈ ℕ0 → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
50 |
48 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
51 |
43 23 47 50 19
|
dvmptcmul |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ) ) |
52 |
9 7 11 15 16 25 42 51
|
dvmptfsum |
⊢ ( 𝜑 → ( ℂ D ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ) ) |
53 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) |
54 |
53
|
nnne0d |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ≠ 0 ) |
55 |
54
|
neneqd |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ¬ 𝑘 = 0 ) |
56 |
55
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ¬ 𝑘 = 0 ) |
57 |
56
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) = ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) |
58 |
57
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) |
59 |
58
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) |
60 |
|
1eluzge0 |
⊢ 1 ∈ ( ℤ≥ ‘ 0 ) |
61 |
|
fzss1 |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) ) |
62 |
60 61
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) ) |
63 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝐴 : ℕ0 ⟶ ℂ ) |
64 |
53
|
nnnn0d |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
65 |
63 64 18
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
66 |
54
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ≠ 0 ) |
67 |
66
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ¬ 𝑘 = 0 ) |
68 |
67
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) = ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) |
69 |
64
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
70 |
69
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
71 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑧 ∈ ℂ ) |
72 |
53 37
|
syl |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
73 |
72
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
74 |
71 73
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝑧 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
75 |
70 74
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
76 |
68 75
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ∈ ℂ ) |
77 |
65 76
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ∈ ℂ ) |
78 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) → ¬ 𝑘 ∈ ( 1 ... 𝑁 ) ) |
79 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
80 |
79
|
oveq1i |
⊢ ( ( 0 + 1 ) ... 𝑁 ) = ( 1 ... 𝑁 ) |
81 |
80
|
eleq2i |
⊢ ( 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ↔ 𝑘 ∈ ( 1 ... 𝑁 ) ) |
82 |
78 81
|
sylnibr |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) → ¬ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ) |
83 |
82
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → ¬ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ) |
84 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
85 |
84
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
86 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
87 |
5 86
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
88 |
87
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
89 |
|
elfzp12 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑘 = 0 ∨ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ) ) ) |
90 |
88 89
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑘 = 0 ∨ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ) ) ) |
91 |
85 90
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → ( 𝑘 = 0 ∨ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ) ) |
92 |
|
orel2 |
⊢ ( ¬ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) → ( ( 𝑘 = 0 ∨ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ) → 𝑘 = 0 ) ) |
93 |
83 91 92
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → 𝑘 = 0 ) |
94 |
93
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) = 0 ) |
95 |
94
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · 0 ) ) |
96 |
63 17 18
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
97 |
96
|
mul01d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · 0 ) = 0 ) |
98 |
84 97
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · 0 ) = 0 ) |
99 |
95 98
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... 𝑁 ) ∖ ( 1 ... 𝑁 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) = 0 ) |
100 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 0 ... 𝑁 ) ∈ Fin ) |
101 |
62 77 99 100
|
fsumss |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
102 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℕ0 ) |
103 |
102
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ℕ0 ) |
104 |
103
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ℂ ) |
105 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
106 |
|
pncan |
⊢ ( ( 𝑗 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 ) |
107 |
104 105 106
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 ) |
108 |
107
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) = ( 𝑧 ↑ 𝑗 ) ) |
109 |
108
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) = ( ( 𝑗 + 1 ) · ( 𝑧 ↑ 𝑗 ) ) ) |
110 |
109
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) = ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ 𝑗 ) ) ) ) |
111 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
112 |
|
peano2nn0 |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ0 ) |
113 |
102 112
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
114 |
113
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
115 |
111 114
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 ‘ ( 𝑗 + 1 ) ) ∈ ℂ ) |
116 |
114
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 + 1 ) ∈ ℂ ) |
117 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑧 ∈ ℂ ) |
118 |
117 103
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑧 ↑ 𝑗 ) ∈ ℂ ) |
119 |
115 116 118
|
mulassd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( 𝑗 + 1 ) ) · ( 𝑧 ↑ 𝑗 ) ) = ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ 𝑗 ) ) ) ) |
120 |
115 116
|
mulcomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( 𝑗 + 1 ) ) = ( ( 𝑗 + 1 ) · ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
121 |
120
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( 𝑗 + 1 ) ) · ( 𝑧 ↑ 𝑗 ) ) = ( ( ( 𝑗 + 1 ) · ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) · ( 𝑧 ↑ 𝑗 ) ) ) |
122 |
110 119 121
|
3eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) = ( ( ( 𝑗 + 1 ) · ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) · ( 𝑧 ↑ 𝑗 ) ) ) |
123 |
122
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( 𝑗 + 1 ) · ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) · ( 𝑧 ↑ 𝑗 ) ) ) |
124 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
125 |
124
|
oveq1i |
⊢ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) = ( 0 ... ( 𝑁 − 1 ) ) |
126 |
125
|
sumeq1i |
⊢ Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) |
127 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 + 1 ) = ( 𝑗 + 1 ) ) |
128 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 ‘ ( 𝑘 + 1 ) ) = ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) |
129 |
127 128
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑗 + 1 ) · ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
130 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑧 ↑ 𝑘 ) = ( 𝑧 ↑ 𝑗 ) ) |
131 |
129 130
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( ( 𝑗 + 1 ) · ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) · ( 𝑧 ↑ 𝑗 ) ) ) |
132 |
131
|
cbvsumv |
⊢ Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( 𝑗 + 1 ) · ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) · ( 𝑧 ↑ 𝑗 ) ) |
133 |
123 126 132
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑧 ↑ 𝑘 ) ) ) |
134 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 1 ∈ ℤ ) |
135 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
136 |
135
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑁 ∈ ℤ ) |
137 |
65 75
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ∈ ℂ ) |
138 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) |
139 |
|
id |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → 𝑘 = ( 𝑗 + 1 ) ) |
140 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑘 − 1 ) = ( ( 𝑗 + 1 ) − 1 ) ) |
141 |
140
|
oveq2d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑧 ↑ ( 𝑘 − 1 ) ) = ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) |
142 |
139 141
|
oveq12d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) = ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) |
143 |
138 142
|
oveq12d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) = ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) ) |
144 |
134 134 136 137 143
|
fsumshftm |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) = Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( ( 𝐴 ‘ ( 𝑗 + 1 ) ) · ( ( 𝑗 + 1 ) · ( 𝑧 ↑ ( ( 𝑗 + 1 ) − 1 ) ) ) ) ) |
145 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℕ0 ) |
146 |
145
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
147 |
|
ovex |
⊢ ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ∈ V |
148 |
4
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ∈ V ) → ( 𝐵 ‘ 𝑘 ) = ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ) |
149 |
146 147 148
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐵 ‘ 𝑘 ) = ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) ) |
150 |
149
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑧 ↑ 𝑘 ) ) ) |
151 |
150
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( 𝑘 + 1 ) · ( 𝐴 ‘ ( 𝑘 + 1 ) ) ) · ( 𝑧 ↑ 𝑘 ) ) ) |
152 |
133 144 151
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
153 |
59 101 152
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
154 |
153
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
155 |
154 2
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · if ( 𝑘 = 0 , 0 , ( 𝑘 · ( 𝑧 ↑ ( 𝑘 − 1 ) ) ) ) ) ) = 𝐺 ) |
156 |
6 52 155
|
3eqtrd |
⊢ ( 𝜑 → ( ℂ D 𝐹 ) = 𝐺 ) |