Description: The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | dvply2g | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyf | |
|
2 | 1 | adantl | |
3 | 2 | feqmptd | |
4 | simplr | |
|
5 | dgrcl | |
|
6 | 5 | adantl | |
7 | 6 | nn0zd | |
8 | 7 | adantr | |
9 | uzid | |
|
10 | peano2uz | |
|
11 | 8 9 10 | 3syl | |
12 | simpr | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | 13 14 | coeid3 | |
16 | 4 11 12 15 | syl3anc | |
17 | 16 | mpteq2dva | |
18 | 3 17 | eqtrd | |
19 | 6 | nn0cnd | |
20 | ax-1cn | |
|
21 | pncan | |
|
22 | 19 20 21 | sylancl | |
23 | 22 | eqcomd | |
24 | 23 | oveq2d | |
25 | 24 | sumeq1d | |
26 | 25 | mpteq2dv | |
27 | 13 | coef3 | |
28 | 27 | adantl | |
29 | oveq1 | |
|
30 | fvoveq1 | |
|
31 | 29 30 | oveq12d | |
32 | 31 | cbvmptv | |
33 | peano2nn0 | |
|
34 | 6 33 | syl | |
35 | 18 26 28 32 34 | dvply1 | |
36 | cnfldbas | |
|
37 | 36 | subrgss | |
38 | 37 | adantr | |
39 | elfznn0 | |
|
40 | simpll | |
|
41 | zsssubrg | |
|
42 | 41 | ad2antrr | |
43 | peano2nn0 | |
|
44 | 43 | adantl | |
45 | 44 | nn0zd | |
46 | 42 45 | sseldd | |
47 | simplr | |
|
48 | subrgsubg | |
|
49 | cnfld0 | |
|
50 | 49 | subg0cl | |
51 | 48 50 | syl | |
52 | 51 | ad2antrr | |
53 | 13 | coef2 | |
54 | 47 52 53 | syl2anc | |
55 | 54 44 | ffvelcdmd | |
56 | cnfldmul | |
|
57 | 56 | subrgmcl | |
58 | 40 46 55 57 | syl3anc | |
59 | 58 | fmpttd | |
60 | 59 | ffvelcdmda | |
61 | 39 60 | sylan2 | |
62 | 38 6 61 | elplyd | |
63 | 35 62 | eqeltrd | |