Metamath Proof Explorer


Theorem dvply2g

Description: The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Assertion dvply2g SSubRingfldFPolySDFPolyS

Proof

Step Hyp Ref Expression
1 plyf FPolySF:
2 1 adantl SSubRingfldFPolySF:
3 2 feqmptd SSubRingfldFPolySF=aFa
4 simplr SSubRingfldFPolySaFPolyS
5 dgrcl FPolySdegF0
6 5 adantl SSubRingfldFPolySdegF0
7 6 nn0zd SSubRingfldFPolySdegF
8 7 adantr SSubRingfldFPolySadegF
9 uzid degFdegFdegF
10 peano2uz degFdegFdegF+1degF
11 8 9 10 3syl SSubRingfldFPolySadegF+1degF
12 simpr SSubRingfldFPolySaa
13 eqid coeffF=coeffF
14 eqid degF=degF
15 13 14 coeid3 FPolySdegF+1degFaFa=b=0degF+1coeffFbab
16 4 11 12 15 syl3anc SSubRingfldFPolySaFa=b=0degF+1coeffFbab
17 16 mpteq2dva SSubRingfldFPolySaFa=ab=0degF+1coeffFbab
18 3 17 eqtrd SSubRingfldFPolySF=ab=0degF+1coeffFbab
19 6 nn0cnd SSubRingfldFPolySdegF
20 ax-1cn 1
21 pncan degF1degF+1-1=degF
22 19 20 21 sylancl SSubRingfldFPolySdegF+1-1=degF
23 22 eqcomd SSubRingfldFPolySdegF=degF+1-1
24 23 oveq2d SSubRingfldFPolyS0degF=0degF+1-1
25 24 sumeq1d SSubRingfldFPolySb=0degFc0c+1coeffFc+1bab=b=0degF+1-1c0c+1coeffFc+1bab
26 25 mpteq2dv SSubRingfldFPolySab=0degFc0c+1coeffFc+1bab=ab=0degF+1-1c0c+1coeffFc+1bab
27 13 coef3 FPolyScoeffF:0
28 27 adantl SSubRingfldFPolyScoeffF:0
29 oveq1 c=bc+1=b+1
30 fvoveq1 c=bcoeffFc+1=coeffFb+1
31 29 30 oveq12d c=bc+1coeffFc+1=b+1coeffFb+1
32 31 cbvmptv c0c+1coeffFc+1=b0b+1coeffFb+1
33 peano2nn0 degF0degF+10
34 6 33 syl SSubRingfldFPolySdegF+10
35 18 26 28 32 34 dvply1 SSubRingfldFPolySDF=ab=0degFc0c+1coeffFc+1bab
36 cnfldbas =Basefld
37 36 subrgss SSubRingfldS
38 37 adantr SSubRingfldFPolySS
39 elfznn0 b0degFb0
40 simpll SSubRingfldFPolySc0SSubRingfld
41 zsssubrg SSubRingfldS
42 41 ad2antrr SSubRingfldFPolySc0S
43 peano2nn0 c0c+10
44 43 adantl SSubRingfldFPolySc0c+10
45 44 nn0zd SSubRingfldFPolySc0c+1
46 42 45 sseldd SSubRingfldFPolySc0c+1S
47 simplr SSubRingfldFPolySc0FPolyS
48 subrgsubg SSubRingfldSSubGrpfld
49 cnfld0 0=0fld
50 49 subg0cl SSubGrpfld0S
51 48 50 syl SSubRingfld0S
52 51 ad2antrr SSubRingfldFPolySc00S
53 13 coef2 FPolyS0ScoeffF:0S
54 47 52 53 syl2anc SSubRingfldFPolySc0coeffF:0S
55 54 44 ffvelcdmd SSubRingfldFPolySc0coeffFc+1S
56 cnfldmul ×=fld
57 56 subrgmcl SSubRingfldc+1ScoeffFc+1Sc+1coeffFc+1S
58 40 46 55 57 syl3anc SSubRingfldFPolySc0c+1coeffFc+1S
59 58 fmpttd SSubRingfldFPolySc0c+1coeffFc+1:0S
60 59 ffvelcdmda SSubRingfldFPolySb0c0c+1coeffFc+1bS
61 39 60 sylan2 SSubRingfldFPolySb0degFc0c+1coeffFc+1bS
62 38 6 61 elplyd SSubRingfldFPolySab=0degFc0c+1coeffFc+1babPolyS
63 35 62 eqeltrd SSubRingfldFPolySDFPolyS