| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyf |
|
| 2 |
1
|
adantl |
|
| 3 |
2
|
feqmptd |
|
| 4 |
|
simplr |
|
| 5 |
|
dgrcl |
|
| 6 |
5
|
adantl |
|
| 7 |
6
|
nn0zd |
|
| 8 |
7
|
adantr |
|
| 9 |
|
uzid |
|
| 10 |
|
peano2uz |
|
| 11 |
8 9 10
|
3syl |
|
| 12 |
|
simpr |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
13 14
|
coeid3 |
|
| 16 |
4 11 12 15
|
syl3anc |
|
| 17 |
16
|
mpteq2dva |
|
| 18 |
3 17
|
eqtrd |
|
| 19 |
6
|
nn0cnd |
|
| 20 |
|
ax-1cn |
|
| 21 |
|
pncan |
|
| 22 |
19 20 21
|
sylancl |
|
| 23 |
22
|
eqcomd |
|
| 24 |
23
|
oveq2d |
|
| 25 |
24
|
sumeq1d |
|
| 26 |
25
|
mpteq2dv |
|
| 27 |
13
|
coef3 |
|
| 28 |
27
|
adantl |
|
| 29 |
|
oveq1 |
|
| 30 |
|
fvoveq1 |
|
| 31 |
29 30
|
oveq12d |
|
| 32 |
31
|
cbvmptv |
|
| 33 |
|
peano2nn0 |
|
| 34 |
6 33
|
syl |
|
| 35 |
18 26 28 32 34
|
dvply1 |
|
| 36 |
|
cnfldbas |
|
| 37 |
36
|
subrgss |
|
| 38 |
37
|
adantr |
|
| 39 |
|
elfznn0 |
|
| 40 |
|
simpll |
|
| 41 |
|
zsssubrg |
|
| 42 |
41
|
ad2antrr |
|
| 43 |
|
peano2nn0 |
|
| 44 |
43
|
adantl |
|
| 45 |
44
|
nn0zd |
|
| 46 |
42 45
|
sseldd |
|
| 47 |
|
simplr |
|
| 48 |
|
subrgsubg |
|
| 49 |
|
cnfld0 |
|
| 50 |
49
|
subg0cl |
|
| 51 |
48 50
|
syl |
|
| 52 |
51
|
ad2antrr |
|
| 53 |
13
|
coef2 |
|
| 54 |
47 52 53
|
syl2anc |
|
| 55 |
54 44
|
ffvelcdmd |
|
| 56 |
|
mpocnfldmul |
|
| 57 |
56
|
subrgmcl |
|
| 58 |
37
|
a1d |
|
| 59 |
|
ssel |
|
| 60 |
59
|
a1i |
|
| 61 |
58 60
|
syld |
|
| 62 |
61
|
com23 |
|
| 63 |
62
|
3imp |
|
| 64 |
37
|
a1d |
|
| 65 |
|
ssel |
|
| 66 |
65
|
a1i |
|
| 67 |
64 66
|
syld |
|
| 68 |
67
|
3imp |
|
| 69 |
63 68
|
jca |
|
| 70 |
|
ovmpot |
|
| 71 |
69 70
|
syl |
|
| 72 |
71
|
eleq1d |
|
| 73 |
57 72
|
mpbid |
|
| 74 |
40 46 55 73
|
syl3anc |
|
| 75 |
74
|
fmpttd |
|
| 76 |
75
|
ffvelcdmda |
|
| 77 |
39 76
|
sylan2 |
|
| 78 |
38 6 77
|
elplyd |
|
| 79 |
35 78
|
eqeltrd |
|