Metamath Proof Explorer


Theorem dvres2lem

Description: Lemma for dvres2 . (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses dvres.k K=TopOpenfld
dvres.t T=K𝑡S
dvres.g G=zAxFzFxzx
dvres.s φS
dvres.f φF:A
dvres.a φAS
dvres.b φBS
dvres.y φy
dvres2lem.d φxFSy
dvres2lem.x φxB
Assertion dvres2lem φxFBBy

Proof

Step Hyp Ref Expression
1 dvres.k K=TopOpenfld
2 dvres.t T=K𝑡S
3 dvres.g G=zAxFzFxzx
4 dvres.s φS
5 dvres.f φF:A
6 dvres.a φAS
7 dvres.b φBS
8 dvres.y φy
9 dvres2lem.d φxFSy
10 dvres2lem.x φxB
11 1 cnfldtop KTop
12 cnex V
13 ssexg SVSV
14 4 12 13 sylancl φSV
15 resttop KTopSVK𝑡STop
16 11 14 15 sylancr φK𝑡STop
17 2 16 eqeltrid φTTop
18 inss1 ABA
19 18 6 sstrid φABS
20 1 cnfldtopon KTopOn
21 resttopon KTopOnSK𝑡STopOnS
22 20 4 21 sylancr φK𝑡STopOnS
23 2 22 eqeltrid φTTopOnS
24 toponuni TTopOnSS=T
25 23 24 syl φS=T
26 19 25 sseqtrd φABT
27 difssd φTBT
28 26 27 unssd φABTBT
29 inundif ABAB=A
30 6 25 sseqtrd φAT
31 ssdif ATABTB
32 unss2 ABTBABABABTB
33 30 31 32 3syl φABABABTB
34 29 33 eqsstrrid φAABTB
35 eqid T=T
36 35 ntrss TTopABTBTAABTBintTAintTABTB
37 17 28 34 36 syl3anc φintTAintTABTB
38 2 1 3 4 5 6 eldv φxFSyxintTAyGlimx
39 9 38 mpbid φxintTAyGlimx
40 39 simpld φxintTA
41 37 40 sseldd φxintTABTB
42 41 10 elind φxintTABTBB
43 7 25 sseqtrd φBT
44 inss2 ABB
45 44 a1i φABB
46 eqid T𝑡B=T𝑡B
47 35 46 restntr TTopBTABBintT𝑡BAB=intTABTBB
48 17 43 45 47 syl3anc φintT𝑡BAB=intTABTBB
49 2 oveq1i T𝑡B=K𝑡S𝑡B
50 11 a1i φKTop
51 restabs KTopBSSVK𝑡S𝑡B=K𝑡B
52 50 7 14 51 syl3anc φK𝑡S𝑡B=K𝑡B
53 49 52 eqtrid φT𝑡B=K𝑡B
54 53 fveq2d φintT𝑡B=intK𝑡B
55 54 fveq1d φintT𝑡BAB=intK𝑡BAB
56 48 55 eqtr3d φintTABTBB=intK𝑡BAB
57 42 56 eleqtrd φxintK𝑡BAB
58 limcresi GlimxGABxlimx
59 39 simprd φyGlimx
60 58 59 sselid φyGABxlimx
61 difss ABxAB
62 61 44 sstri ABxB
63 62 sseli zABxzB
64 fvres zBFBz=Fz
65 10 fvresd φFBx=Fx
66 64 65 oveqan12rd φzBFBzFBx=FzFx
67 66 oveq1d φzBFBzFBxzx=FzFxzx
68 63 67 sylan2 φzABxFBzFBxzx=FzFxzx
69 68 mpteq2dva φzABxFBzFBxzx=zABxFzFxzx
70 3 reseq1i GABx=zAxFzFxzxABx
71 ssdif ABAABxAx
72 resmpt ABxAxzAxFzFxzxABx=zABxFzFxzx
73 18 71 72 mp2b zAxFzFxzxABx=zABxFzFxzx
74 70 73 eqtri GABx=zABxFzFxzx
75 69 74 eqtr4di φzABxFBzFBxzx=GABx
76 75 oveq1d φzABxFBzFBxzxlimx=GABxlimx
77 60 76 eleqtrrd φyzABxFBzFBxzxlimx
78 eqid K𝑡B=K𝑡B
79 eqid zABxFBzFBxzx=zABxFBzFBxzx
80 7 4 sstrd φB
81 fresin F:AFB:AB
82 5 81 syl φFB:AB
83 78 1 79 80 82 45 eldv φxFBByxintK𝑡BAByzABxFBzFBxzxlimx
84 57 77 83 mpbir2and φxFBBy