Metamath Proof Explorer


Theorem dvres2lem

Description: Lemma for dvres2 . (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses dvres.k K = TopOpen fld
dvres.t T = K 𝑡 S
dvres.g G = z A x F z F x z x
dvres.s φ S
dvres.f φ F : A
dvres.a φ A S
dvres.b φ B S
dvres.y φ y
dvres2lem.d φ x F S y
dvres2lem.x φ x B
Assertion dvres2lem φ x F B B y

Proof

Step Hyp Ref Expression
1 dvres.k K = TopOpen fld
2 dvres.t T = K 𝑡 S
3 dvres.g G = z A x F z F x z x
4 dvres.s φ S
5 dvres.f φ F : A
6 dvres.a φ A S
7 dvres.b φ B S
8 dvres.y φ y
9 dvres2lem.d φ x F S y
10 dvres2lem.x φ x B
11 1 cnfldtop K Top
12 cnex V
13 ssexg S V S V
14 4 12 13 sylancl φ S V
15 resttop K Top S V K 𝑡 S Top
16 11 14 15 sylancr φ K 𝑡 S Top
17 2 16 eqeltrid φ T Top
18 inss1 A B A
19 18 6 sstrid φ A B S
20 1 cnfldtopon K TopOn
21 resttopon K TopOn S K 𝑡 S TopOn S
22 20 4 21 sylancr φ K 𝑡 S TopOn S
23 2 22 eqeltrid φ T TopOn S
24 toponuni T TopOn S S = T
25 23 24 syl φ S = T
26 19 25 sseqtrd φ A B T
27 difssd φ T B T
28 26 27 unssd φ A B T B T
29 inundif A B A B = A
30 6 25 sseqtrd φ A T
31 ssdif A T A B T B
32 unss2 A B T B A B A B A B T B
33 30 31 32 3syl φ A B A B A B T B
34 29 33 eqsstrrid φ A A B T B
35 eqid T = T
36 35 ntrss T Top A B T B T A A B T B int T A int T A B T B
37 17 28 34 36 syl3anc φ int T A int T A B T B
38 2 1 3 4 5 6 eldv φ x F S y x int T A y G lim x
39 9 38 mpbid φ x int T A y G lim x
40 39 simpld φ x int T A
41 37 40 sseldd φ x int T A B T B
42 41 10 elind φ x int T A B T B B
43 7 25 sseqtrd φ B T
44 inss2 A B B
45 44 a1i φ A B B
46 eqid T 𝑡 B = T 𝑡 B
47 35 46 restntr T Top B T A B B int T 𝑡 B A B = int T A B T B B
48 17 43 45 47 syl3anc φ int T 𝑡 B A B = int T A B T B B
49 2 oveq1i T 𝑡 B = K 𝑡 S 𝑡 B
50 11 a1i φ K Top
51 restabs K Top B S S V K 𝑡 S 𝑡 B = K 𝑡 B
52 50 7 14 51 syl3anc φ K 𝑡 S 𝑡 B = K 𝑡 B
53 49 52 eqtrid φ T 𝑡 B = K 𝑡 B
54 53 fveq2d φ int T 𝑡 B = int K 𝑡 B
55 54 fveq1d φ int T 𝑡 B A B = int K 𝑡 B A B
56 48 55 eqtr3d φ int T A B T B B = int K 𝑡 B A B
57 42 56 eleqtrd φ x int K 𝑡 B A B
58 limcresi G lim x G A B x lim x
59 39 simprd φ y G lim x
60 58 59 sselid φ y G A B x lim x
61 difss A B x A B
62 61 44 sstri A B x B
63 62 sseli z A B x z B
64 fvres z B F B z = F z
65 10 fvresd φ F B x = F x
66 64 65 oveqan12rd φ z B F B z F B x = F z F x
67 66 oveq1d φ z B F B z F B x z x = F z F x z x
68 63 67 sylan2 φ z A B x F B z F B x z x = F z F x z x
69 68 mpteq2dva φ z A B x F B z F B x z x = z A B x F z F x z x
70 3 reseq1i G A B x = z A x F z F x z x A B x
71 ssdif A B A A B x A x
72 resmpt A B x A x z A x F z F x z x A B x = z A B x F z F x z x
73 18 71 72 mp2b z A x F z F x z x A B x = z A B x F z F x z x
74 70 73 eqtri G A B x = z A B x F z F x z x
75 69 74 eqtr4di φ z A B x F B z F B x z x = G A B x
76 75 oveq1d φ z A B x F B z F B x z x lim x = G A B x lim x
77 60 76 eleqtrrd φ y z A B x F B z F B x z x lim x
78 eqid K 𝑡 B = K 𝑡 B
79 eqid z A B x F B z F B x z x = z A B x F B z F B x z x
80 7 4 sstrd φ B
81 fresin F : A F B : A B
82 5 81 syl φ F B : A B
83 78 1 79 80 82 45 eldv φ x F B B y x int K 𝑡 B A B y z A B x F B z F B x z x lim x
84 57 77 83 mpbir2and φ x F B B y