Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
|
2 |
|
dya2ioc.1 |
|
3 |
|
dya2ioc.2 |
|
4 |
|
unissb |
|
5 |
|
vex |
|
6 |
|
vex |
|
7 |
5 6
|
xpex |
|
8 |
3 7
|
elrnmpo |
|
9 |
|
simpr |
|
10 |
|
pwssb |
|
11 |
|
ovex |
|
12 |
2 11
|
elrnmpo |
|
13 |
|
simpr |
|
14 |
|
simpll |
|
15 |
14
|
zred |
|
16 |
|
2re |
|
17 |
16
|
a1i |
|
18 |
|
2ne0 |
|
19 |
18
|
a1i |
|
20 |
|
simplr |
|
21 |
17 19 20
|
reexpclzd |
|
22 |
|
2cnd |
|
23 |
22 19 20
|
expne0d |
|
24 |
15 21 23
|
redivcld |
|
25 |
|
1red |
|
26 |
15 25
|
readdcld |
|
27 |
26 21 23
|
redivcld |
|
28 |
27
|
rexrd |
|
29 |
|
icossre |
|
30 |
24 28 29
|
syl2anc |
|
31 |
13 30
|
eqsstrd |
|
32 |
31
|
ex |
|
33 |
32
|
rexlimivv |
|
34 |
12 33
|
sylbi |
|
35 |
10 34
|
mprgbir |
|
36 |
35
|
sseli |
|
37 |
36
|
elpwid |
|
38 |
35
|
sseli |
|
39 |
38
|
elpwid |
|
40 |
|
xpss12 |
|
41 |
37 39 40
|
syl2an |
|
42 |
41
|
adantr |
|
43 |
9 42
|
eqsstrd |
|
44 |
43
|
ex |
|
45 |
44
|
rexlimivv |
|
46 |
8 45
|
sylbi |
|
47 |
4 46
|
mprgbir |
|
48 |
|
retop |
|
49 |
1 48
|
eqeltri |
|
50 |
49 49
|
txtopi |
|
51 |
|
uniretop |
|
52 |
1
|
unieqi |
|
53 |
51 52
|
eqtr4i |
|
54 |
49 49 53 53
|
txunii |
|
55 |
54
|
topopn |
|
56 |
1 2 3
|
dya2iocuni |
|
57 |
50 55 56
|
mp2b |
|
58 |
|
simpr |
|
59 |
|
elpwi |
|
60 |
59
|
adantr |
|
61 |
60
|
unissd |
|
62 |
58 61
|
eqsstrrd |
|
63 |
62
|
rexlimiva |
|
64 |
57 63
|
ax-mp |
|
65 |
47 64
|
eqssi |
|