Metamath Proof Explorer


Theorem dya2iocucvr

Description: The dyadic rectangular set collection covers ( RR X. RR ) . (Contributed by Thierry Arnoux, 18-Sep-2017)

Ref Expression
Hypotheses sxbrsiga.0 J = topGen ran .
dya2ioc.1 I = x , n x 2 n x + 1 2 n
dya2ioc.2 R = u ran I , v ran I u × v
Assertion dya2iocucvr ran R = 2

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J = topGen ran .
2 dya2ioc.1 I = x , n x 2 n x + 1 2 n
3 dya2ioc.2 R = u ran I , v ran I u × v
4 unissb ran R 2 d ran R d 2
5 vex u V
6 vex v V
7 5 6 xpex u × v V
8 3 7 elrnmpo d ran R u ran I v ran I d = u × v
9 simpr u ran I v ran I d = u × v d = u × v
10 pwssb ran I 𝒫 d ran I d
11 ovex x 2 n x + 1 2 n V
12 2 11 elrnmpo d ran I x n d = x 2 n x + 1 2 n
13 simpr x n d = x 2 n x + 1 2 n d = x 2 n x + 1 2 n
14 simpll x n d = x 2 n x + 1 2 n x
15 14 zred x n d = x 2 n x + 1 2 n x
16 2re 2
17 16 a1i x n d = x 2 n x + 1 2 n 2
18 2ne0 2 0
19 18 a1i x n d = x 2 n x + 1 2 n 2 0
20 simplr x n d = x 2 n x + 1 2 n n
21 17 19 20 reexpclzd x n d = x 2 n x + 1 2 n 2 n
22 2cnd x n d = x 2 n x + 1 2 n 2
23 22 19 20 expne0d x n d = x 2 n x + 1 2 n 2 n 0
24 15 21 23 redivcld x n d = x 2 n x + 1 2 n x 2 n
25 1red x n d = x 2 n x + 1 2 n 1
26 15 25 readdcld x n d = x 2 n x + 1 2 n x + 1
27 26 21 23 redivcld x n d = x 2 n x + 1 2 n x + 1 2 n
28 27 rexrd x n d = x 2 n x + 1 2 n x + 1 2 n *
29 icossre x 2 n x + 1 2 n * x 2 n x + 1 2 n
30 24 28 29 syl2anc x n d = x 2 n x + 1 2 n x 2 n x + 1 2 n
31 13 30 eqsstrd x n d = x 2 n x + 1 2 n d
32 31 ex x n d = x 2 n x + 1 2 n d
33 32 rexlimivv x n d = x 2 n x + 1 2 n d
34 12 33 sylbi d ran I d
35 10 34 mprgbir ran I 𝒫
36 35 sseli u ran I u 𝒫
37 36 elpwid u ran I u
38 35 sseli v ran I v 𝒫
39 38 elpwid v ran I v
40 xpss12 u v u × v 2
41 37 39 40 syl2an u ran I v ran I u × v 2
42 41 adantr u ran I v ran I d = u × v u × v 2
43 9 42 eqsstrd u ran I v ran I d = u × v d 2
44 43 ex u ran I v ran I d = u × v d 2
45 44 rexlimivv u ran I v ran I d = u × v d 2
46 8 45 sylbi d ran R d 2
47 4 46 mprgbir ran R 2
48 retop topGen ran . Top
49 1 48 eqeltri J Top
50 49 49 txtopi J × t J Top
51 uniretop = topGen ran .
52 1 unieqi J = topGen ran .
53 51 52 eqtr4i = J
54 49 49 53 53 txunii 2 = J × t J
55 54 topopn J × t J Top 2 J × t J
56 1 2 3 dya2iocuni 2 J × t J c 𝒫 ran R c = 2
57 50 55 56 mp2b c 𝒫 ran R c = 2
58 simpr c 𝒫 ran R c = 2 c = 2
59 elpwi c 𝒫 ran R c ran R
60 59 adantr c 𝒫 ran R c = 2 c ran R
61 60 unissd c 𝒫 ran R c = 2 c ran R
62 58 61 eqsstrrd c 𝒫 ran R c = 2 2 ran R
63 62 rexlimiva c 𝒫 ran R c = 2 2 ran R
64 57 63 ax-mp 2 ran R
65 47 64 eqssi ran R = 2