| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
|
| 2 |
|
efgval.r |
|
| 3 |
|
efgval2.m |
|
| 4 |
|
efgval2.t |
|
| 5 |
|
efgred.d |
|
| 6 |
|
efgred.s |
|
| 7 |
1 2 3 4 5 6
|
efgsfo |
|
| 8 |
|
foelrn |
|
| 9 |
7 8
|
mpan |
|
| 10 |
1 2 3 4 5 6
|
efgsdm |
|
| 11 |
10
|
simp2bi |
|
| 12 |
1 2 3 4 5 6
|
efgsrel |
|
| 13 |
12
|
adantl |
|
| 14 |
|
breq1 |
|
| 15 |
14
|
rspcev |
|
| 16 |
11 13 15
|
syl2an2 |
|
| 17 |
|
breq2 |
|
| 18 |
17
|
rexbidv |
|
| 19 |
16 18
|
syl5ibrcom |
|
| 20 |
19
|
rexlimdva |
|
| 21 |
9 20
|
mpd |
|
| 22 |
1 2
|
efger |
|
| 23 |
22
|
a1i |
|
| 24 |
|
simprl |
|
| 25 |
|
simprr |
|
| 26 |
23 24 25
|
ertr4d |
|
| 27 |
1 2 3 4 5 6
|
efgrelex |
|
| 28 |
|
fofn |
|
| 29 |
|
fniniseg |
|
| 30 |
7 28 29
|
mp2b |
|
| 31 |
30
|
simplbi |
|
| 32 |
31
|
ad2antrl |
|
| 33 |
1 2 3 4 5 6
|
efgsval |
|
| 34 |
32 33
|
syl |
|
| 35 |
30
|
simprbi |
|
| 36 |
35
|
ad2antrl |
|
| 37 |
|
simpllr |
|
| 38 |
37
|
simpld |
|
| 39 |
36 38
|
eqeltrd |
|
| 40 |
1 2 3 4 5 6
|
efgs1b |
|
| 41 |
32 40
|
syl |
|
| 42 |
39 41
|
mpbid |
|
| 43 |
42
|
oveq1d |
|
| 44 |
|
1m1e0 |
|
| 45 |
43 44
|
eqtrdi |
|
| 46 |
45
|
fveq2d |
|
| 47 |
34 36 46
|
3eqtr3rd |
|
| 48 |
|
fniniseg |
|
| 49 |
7 28 48
|
mp2b |
|
| 50 |
49
|
simplbi |
|
| 51 |
50
|
ad2antll |
|
| 52 |
1 2 3 4 5 6
|
efgsval |
|
| 53 |
51 52
|
syl |
|
| 54 |
49
|
simprbi |
|
| 55 |
54
|
ad2antll |
|
| 56 |
37
|
simprd |
|
| 57 |
55 56
|
eqeltrd |
|
| 58 |
1 2 3 4 5 6
|
efgs1b |
|
| 59 |
51 58
|
syl |
|
| 60 |
57 59
|
mpbid |
|
| 61 |
60
|
oveq1d |
|
| 62 |
61 44
|
eqtrdi |
|
| 63 |
62
|
fveq2d |
|
| 64 |
53 55 63
|
3eqtr3rd |
|
| 65 |
47 64
|
eqeq12d |
|
| 66 |
65
|
biimpd |
|
| 67 |
66
|
rexlimdvva |
|
| 68 |
27 67
|
syl5 |
|
| 69 |
26 68
|
mpd |
|
| 70 |
69
|
ex |
|
| 71 |
70
|
ralrimivva |
|
| 72 |
|
breq1 |
|
| 73 |
72
|
reu4 |
|
| 74 |
21 71 73
|
sylanbrc |
|