Metamath Proof Explorer


Theorem efgredeu

Description: There is a unique reduced word equivalent to a given word. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
Assertion efgredeu AW∃!dDd˙A

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 1 2 3 4 5 6 efgsfo S:domSontoW
8 foelrn S:domSontoWAWadomSA=Sa
9 7 8 mpan AWadomSA=Sa
10 1 2 3 4 5 6 efgsdm adomSaWordWa0Di1..^aairanTai1
11 10 simp2bi adomSa0D
12 1 2 3 4 5 6 efgsrel adomSa0˙Sa
13 12 adantl AWadomSa0˙Sa
14 breq1 d=a0d˙Saa0˙Sa
15 14 rspcev a0Da0˙SadDd˙Sa
16 11 13 15 syl2an2 AWadomSdDd˙Sa
17 breq2 A=Sad˙Ad˙Sa
18 17 rexbidv A=SadDd˙AdDd˙Sa
19 16 18 syl5ibrcom AWadomSA=SadDd˙A
20 19 rexlimdva AWadomSA=SadDd˙A
21 9 20 mpd AWdDd˙A
22 1 2 efger ˙ErW
23 22 a1i AWdDcDd˙Ac˙A˙ErW
24 simprl AWdDcDd˙Ac˙Ad˙A
25 simprr AWdDcDd˙Ac˙Ac˙A
26 23 24 25 ertr4d AWdDcDd˙Ac˙Ad˙c
27 1 2 3 4 5 6 efgrelex d˙caS-1dbS-1ca0=b0
28 fofn S:domSontoWSFndomS
29 fniniseg SFndomSaS-1dadomSSa=d
30 7 28 29 mp2b aS-1dadomSSa=d
31 30 simplbi aS-1dadomS
32 31 ad2antrl AWdDcDd˙Ac˙AaS-1dbS-1cadomS
33 1 2 3 4 5 6 efgsval adomSSa=aa1
34 32 33 syl AWdDcDd˙Ac˙AaS-1dbS-1cSa=aa1
35 30 simprbi aS-1dSa=d
36 35 ad2antrl AWdDcDd˙Ac˙AaS-1dbS-1cSa=d
37 simpllr AWdDcDd˙Ac˙AaS-1dbS-1cdDcD
38 37 simpld AWdDcDd˙Ac˙AaS-1dbS-1cdD
39 36 38 eqeltrd AWdDcDd˙Ac˙AaS-1dbS-1cSaD
40 1 2 3 4 5 6 efgs1b adomSSaDa=1
41 32 40 syl AWdDcDd˙Ac˙AaS-1dbS-1cSaDa=1
42 39 41 mpbid AWdDcDd˙Ac˙AaS-1dbS-1ca=1
43 42 oveq1d AWdDcDd˙Ac˙AaS-1dbS-1ca1=11
44 1m1e0 11=0
45 43 44 eqtrdi AWdDcDd˙Ac˙AaS-1dbS-1ca1=0
46 45 fveq2d AWdDcDd˙Ac˙AaS-1dbS-1caa1=a0
47 34 36 46 3eqtr3rd AWdDcDd˙Ac˙AaS-1dbS-1ca0=d
48 fniniseg SFndomSbS-1cbdomSSb=c
49 7 28 48 mp2b bS-1cbdomSSb=c
50 49 simplbi bS-1cbdomS
51 50 ad2antll AWdDcDd˙Ac˙AaS-1dbS-1cbdomS
52 1 2 3 4 5 6 efgsval bdomSSb=bb1
53 51 52 syl AWdDcDd˙Ac˙AaS-1dbS-1cSb=bb1
54 49 simprbi bS-1cSb=c
55 54 ad2antll AWdDcDd˙Ac˙AaS-1dbS-1cSb=c
56 37 simprd AWdDcDd˙Ac˙AaS-1dbS-1ccD
57 55 56 eqeltrd AWdDcDd˙Ac˙AaS-1dbS-1cSbD
58 1 2 3 4 5 6 efgs1b bdomSSbDb=1
59 51 58 syl AWdDcDd˙Ac˙AaS-1dbS-1cSbDb=1
60 57 59 mpbid AWdDcDd˙Ac˙AaS-1dbS-1cb=1
61 60 oveq1d AWdDcDd˙Ac˙AaS-1dbS-1cb1=11
62 61 44 eqtrdi AWdDcDd˙Ac˙AaS-1dbS-1cb1=0
63 62 fveq2d AWdDcDd˙Ac˙AaS-1dbS-1cbb1=b0
64 53 55 63 3eqtr3rd AWdDcDd˙Ac˙AaS-1dbS-1cb0=c
65 47 64 eqeq12d AWdDcDd˙Ac˙AaS-1dbS-1ca0=b0d=c
66 65 biimpd AWdDcDd˙Ac˙AaS-1dbS-1ca0=b0d=c
67 66 rexlimdvva AWdDcDd˙Ac˙AaS-1dbS-1ca0=b0d=c
68 27 67 syl5 AWdDcDd˙Ac˙Ad˙cd=c
69 26 68 mpd AWdDcDd˙Ac˙Ad=c
70 69 ex AWdDcDd˙Ac˙Ad=c
71 70 ralrimivva AWdDcDd˙Ac˙Ad=c
72 breq1 d=cd˙Ac˙A
73 72 reu4 ∃!dDd˙AdDd˙AdDcDd˙Ac˙Ad=c
74 21 71 73 sylanbrc AW∃!dDd˙A