Metamath Proof Explorer


Theorem efgs1b

Description: Every extension sequence ending in an irreducible word is trivial. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
Assertion efgs1b AdomSSADA=1

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 eldifn SAWxWranTx¬SAxWranTx
8 7 5 eleq2s SAD¬SAxWranTx
9 1 2 3 4 5 6 efgsdm AdomSAWordWA0Da1..^AAaranTAa1
10 9 simp1bi AdomSAWordW
11 eldifsn AWordWAWordWA
12 lennncl AWordWAA
13 11 12 sylbi AWordWA
14 10 13 syl AdomSA
15 elnn1uz2 AA=1A2
16 14 15 sylib AdomSA=1A2
17 16 ord AdomS¬A=1A2
18 10 eldifad AdomSAWordW
19 18 adantr AdomSA2AWordW
20 wrdf AWordWA:0..^AW
21 19 20 syl AdomSA2A:0..^AW
22 1z 1
23 simpr AdomSA2A2
24 df-2 2=1+1
25 24 fveq2i 2=1+1
26 23 25 eleqtrdi AdomSA2A1+1
27 eluzp1m1 1A1+1A11
28 22 26 27 sylancr AdomSA2A11
29 nnuz =1
30 28 29 eleqtrrdi AdomSA2A1
31 lbfzo0 00..^A1A1
32 30 31 sylibr AdomSA200..^A1
33 fzoend 00..^A1A-1-10..^A1
34 elfzofz A-1-10..^A1A-1-10A1
35 32 33 34 3syl AdomSA2A-1-10A1
36 eluzelz A2A
37 36 adantl AdomSA2A
38 fzoval A0..^A=0A1
39 37 38 syl AdomSA20..^A=0A1
40 35 39 eleqtrrd AdomSA2A-1-10..^A
41 21 40 ffvelcdmd AdomSA2AA-1-1W
42 uz2m1nn A2A1
43 1 2 3 4 5 6 efgsdmi AdomSA1SAranTAA-1-1
44 42 43 sylan2 AdomSA2SAranTAA-1-1
45 fveq2 a=AA-1-1Ta=TAA-1-1
46 45 rneqd a=AA-1-1ranTa=ranTAA-1-1
47 46 eliuni AA-1-1WSAranTAA-1-1SAaWranTa
48 41 44 47 syl2anc AdomSA2SAaWranTa
49 fveq2 a=xTa=Tx
50 49 rneqd a=xranTa=ranTx
51 50 cbviunv aWranTa=xWranTx
52 48 51 eleqtrdi AdomSA2SAxWranTx
53 52 ex AdomSA2SAxWranTx
54 17 53 syld AdomS¬A=1SAxWranTx
55 54 con1d AdomS¬SAxWranTxA=1
56 8 55 syl5 AdomSSADA=1
57 9 simp2bi AdomSA0D
58 oveq1 A=1A1=11
59 1m1e0 11=0
60 58 59 eqtrdi A=1A1=0
61 60 fveq2d A=1AA1=A0
62 61 eleq1d A=1AA1DA0D
63 57 62 syl5ibrcom AdomSA=1AA1D
64 1 2 3 4 5 6 efgsval AdomSSA=AA1
65 64 eleq1d AdomSSADAA1D
66 63 65 sylibrd AdomSA=1SAD
67 56 66 impbid AdomSSADA=1