Description: Every extension sequence ending in an irreducible word is trivial. (Contributed by Mario Carneiro, 1-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | efgval.w | |
|
efgval.r | |
||
efgval2.m | |
||
efgval2.t | |
||
efgred.d | |
||
efgred.s | |
||
Assertion | efgs1b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | |
|
2 | efgval.r | |
|
3 | efgval2.m | |
|
4 | efgval2.t | |
|
5 | efgred.d | |
|
6 | efgred.s | |
|
7 | eldifn | |
|
8 | 7 5 | eleq2s | |
9 | 1 2 3 4 5 6 | efgsdm | |
10 | 9 | simp1bi | |
11 | eldifsn | |
|
12 | lennncl | |
|
13 | 11 12 | sylbi | |
14 | 10 13 | syl | |
15 | elnn1uz2 | |
|
16 | 14 15 | sylib | |
17 | 16 | ord | |
18 | 10 | eldifad | |
19 | 18 | adantr | |
20 | wrdf | |
|
21 | 19 20 | syl | |
22 | 1z | |
|
23 | simpr | |
|
24 | df-2 | |
|
25 | 24 | fveq2i | |
26 | 23 25 | eleqtrdi | |
27 | eluzp1m1 | |
|
28 | 22 26 27 | sylancr | |
29 | nnuz | |
|
30 | 28 29 | eleqtrrdi | |
31 | lbfzo0 | |
|
32 | 30 31 | sylibr | |
33 | fzoend | |
|
34 | elfzofz | |
|
35 | 32 33 34 | 3syl | |
36 | eluzelz | |
|
37 | 36 | adantl | |
38 | fzoval | |
|
39 | 37 38 | syl | |
40 | 35 39 | eleqtrrd | |
41 | 21 40 | ffvelcdmd | |
42 | uz2m1nn | |
|
43 | 1 2 3 4 5 6 | efgsdmi | |
44 | 42 43 | sylan2 | |
45 | fveq2 | |
|
46 | 45 | rneqd | |
47 | 46 | eliuni | |
48 | 41 44 47 | syl2anc | |
49 | fveq2 | |
|
50 | 49 | rneqd | |
51 | 50 | cbviunv | |
52 | 48 51 | eleqtrdi | |
53 | 52 | ex | |
54 | 17 53 | syld | |
55 | 54 | con1d | |
56 | 8 55 | syl5 | |
57 | 9 | simp2bi | |
58 | oveq1 | |
|
59 | 1m1e0 | |
|
60 | 58 59 | eqtrdi | |
61 | 60 | fveq2d | |
62 | 61 | eleq1d | |
63 | 57 62 | syl5ibrcom | |
64 | 1 2 3 4 5 6 | efgsval | |
65 | 64 | eleq1d | |
66 | 63 65 | sylibrd | |
67 | 56 66 | impbid | |