| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efabl.1 |
|
| 2 |
|
efabl.2 |
|
| 3 |
|
efabl.3 |
|
| 4 |
|
efabl.4 |
|
| 5 |
|
eff |
|
| 6 |
5
|
a1i |
|
| 7 |
3
|
adantr |
|
| 8 |
|
cnfldbas |
|
| 9 |
8
|
subgss |
|
| 10 |
4 9
|
syl |
|
| 11 |
10
|
sselda |
|
| 12 |
7 11
|
mulcld |
|
| 13 |
6 12
|
ffvelcdmd |
|
| 14 |
13
|
ralrimiva |
|
| 15 |
1
|
rnmptss |
|
| 16 |
14 15
|
syl |
|
| 17 |
3
|
mul01d |
|
| 18 |
17
|
fveq2d |
|
| 19 |
|
ef0 |
|
| 20 |
18 19
|
eqtrdi |
|
| 21 |
|
cnfld0 |
|
| 22 |
21
|
subg0cl |
|
| 23 |
4 22
|
syl |
|
| 24 |
|
fvex |
|
| 25 |
|
oveq2 |
|
| 26 |
25
|
fveq2d |
|
| 27 |
1 26
|
elrnmpt1s |
|
| 28 |
23 24 27
|
sylancl |
|
| 29 |
20 28
|
eqeltrrd |
|
| 30 |
1 2 3 4
|
efabl |
|
| 31 |
|
ablgrp |
|
| 32 |
30 31
|
syl |
|
| 33 |
32
|
3ad2ant1 |
|
| 34 |
|
simp2 |
|
| 35 |
|
eqid |
|
| 36 |
35 8
|
mgpbas |
|
| 37 |
2 36
|
ressbas2 |
|
| 38 |
16 37
|
syl |
|
| 39 |
38
|
3ad2ant1 |
|
| 40 |
34 39
|
eleqtrd |
|
| 41 |
|
simp3 |
|
| 42 |
41 39
|
eleqtrd |
|
| 43 |
|
eqid |
|
| 44 |
|
eqid |
|
| 45 |
43 44
|
grpcl |
|
| 46 |
33 40 42 45
|
syl3anc |
|
| 47 |
4
|
mptexd |
|
| 48 |
1 47
|
eqeltrid |
|
| 49 |
|
rnexg |
|
| 50 |
|
cnfldmul |
|
| 51 |
35 50
|
mgpplusg |
|
| 52 |
2 51
|
ressplusg |
|
| 53 |
48 49 52
|
3syl |
|
| 54 |
53
|
3ad2ant1 |
|
| 55 |
54
|
oveqd |
|
| 56 |
46 55 39
|
3eltr4d |
|
| 57 |
56
|
3expb |
|
| 58 |
57
|
ralrimivva |
|
| 59 |
|
cnring |
|
| 60 |
35
|
ringmgp |
|
| 61 |
|
cnfld1 |
|
| 62 |
35 61
|
ringidval |
|
| 63 |
36 62 51
|
issubm |
|
| 64 |
59 60 63
|
mp2b |
|
| 65 |
16 29 58 64
|
syl3anbrc |
|