Description: Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | elixpsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq | |
|
2 | 1 | ixpeq1d | |
3 | 2 | eleq2d | |
4 | opeq1 | |
|
5 | 4 | sneqd | |
6 | 5 | eqeq2d | |
7 | 6 | rexbidv | |
8 | elex | |
|
9 | snex | |
|
10 | eleq1 | |
|
11 | 9 10 | mpbiri | |
12 | 11 | rexlimivw | |
13 | eleq1 | |
|
14 | eqeq1 | |
|
15 | 14 | rexbidv | |
16 | vex | |
|
17 | 16 | elixp | |
18 | vex | |
|
19 | fveq2 | |
|
20 | 19 | eleq1d | |
21 | 18 20 | ralsn | |
22 | 21 | anbi2i | |
23 | simpl | |
|
24 | fveq2 | |
|
25 | 24 | eleq1d | |
26 | 18 25 | ralsn | |
27 | 26 | biimpri | |
28 | 27 | adantl | |
29 | ffnfv | |
|
30 | 23 28 29 | sylanbrc | |
31 | 18 | fsn2 | |
32 | 30 31 | sylib | |
33 | opeq2 | |
|
34 | 33 | sneqd | |
35 | 34 | rspceeqv | |
36 | 32 35 | syl | |
37 | vex | |
|
38 | 18 37 | fvsn | |
39 | id | |
|
40 | 38 39 | eqeltrid | |
41 | 18 37 | fnsn | |
42 | 40 41 | jctil | |
43 | fneq1 | |
|
44 | fveq1 | |
|
45 | 44 | eleq1d | |
46 | 43 45 | anbi12d | |
47 | 42 46 | syl5ibrcom | |
48 | 47 | rexlimiv | |
49 | 36 48 | impbii | |
50 | 17 22 49 | 3bitri | |
51 | 13 15 50 | vtoclbg | |
52 | 8 12 51 | pm5.21nii | |
53 | 3 7 52 | vtoclbg | |