| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv |  | 
						
							| 2 |  | nfmpt1 |  | 
						
							| 3 | 2 | nfel1 |  | 
						
							| 4 | 1 3 | nfan |  | 
						
							| 5 |  | zex |  | 
						
							| 6 |  | nn0ssz |  | 
						
							| 7 |  | mapss |  | 
						
							| 8 | 5 6 7 | mp2an |  | 
						
							| 9 | 8 | sseli |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 |  | mzpf |  | 
						
							| 12 |  | mptfcl |  | 
						
							| 13 | 12 | imp |  | 
						
							| 14 | 11 9 13 | syl2an |  | 
						
							| 15 | 14 | adantll |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 16 | fvmpt2 |  | 
						
							| 18 | 10 15 17 | syl2anc |  | 
						
							| 19 | 18 | eqcomd |  | 
						
							| 20 | 19 | eqeq1d |  | 
						
							| 21 | 20 | ex |  | 
						
							| 22 | 4 21 | ralrimi |  | 
						
							| 23 |  | rabbi |  | 
						
							| 24 | 22 23 | sylib |  | 
						
							| 25 |  | nfcv |  | 
						
							| 26 |  | nfcv |  | 
						
							| 27 |  | nfv |  | 
						
							| 28 |  | nffvmpt1 |  | 
						
							| 29 | 28 | nfeq1 |  | 
						
							| 30 |  | fveqeq2 |  | 
						
							| 31 | 25 26 27 29 30 | cbvrabw |  | 
						
							| 32 | 24 31 | eqtrdi |  | 
						
							| 33 |  | df-rab |  | 
						
							| 34 | 32 33 | eqtrdi |  | 
						
							| 35 |  | elmapi |  | 
						
							| 36 |  | ffn |  | 
						
							| 37 |  | fnresdm |  | 
						
							| 38 | 35 36 37 | 3syl |  | 
						
							| 39 | 38 | eqeq2d |  | 
						
							| 40 |  | equcom |  | 
						
							| 41 | 39 40 | bitrdi |  | 
						
							| 42 | 41 | anbi1d |  | 
						
							| 43 | 42 | rexbiia |  | 
						
							| 44 |  | fveqeq2 |  | 
						
							| 45 | 44 | ceqsrexbv |  | 
						
							| 46 | 43 45 | bitr2i |  | 
						
							| 47 | 46 | abbii |  | 
						
							| 48 | 34 47 | eqtrdi |  | 
						
							| 49 |  | simpl |  | 
						
							| 50 |  | nn0z |  | 
						
							| 51 |  | uzid |  | 
						
							| 52 | 50 51 | syl |  | 
						
							| 53 | 52 | adantr |  | 
						
							| 54 |  | simpr |  | 
						
							| 55 |  | eldioph |  | 
						
							| 56 | 49 53 54 55 | syl3anc |  | 
						
							| 57 | 48 56 | eqeltrd |  |