Description: This is the first of a number of theorems which allow sets to be proven Diophantine by syntactic induction, and models the correspondence between Diophantine sets and monotone existential first-order logic. This first theorem shows that the zero set of an implicit polynomial is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | eq0rabdioph | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | |
|
2 | nfmpt1 | |
|
3 | 2 | nfel1 | |
4 | 1 3 | nfan | |
5 | zex | |
|
6 | nn0ssz | |
|
7 | mapss | |
|
8 | 5 6 7 | mp2an | |
9 | 8 | sseli | |
10 | 9 | adantl | |
11 | mzpf | |
|
12 | mptfcl | |
|
13 | 12 | imp | |
14 | 11 9 13 | syl2an | |
15 | 14 | adantll | |
16 | eqid | |
|
17 | 16 | fvmpt2 | |
18 | 10 15 17 | syl2anc | |
19 | 18 | eqcomd | |
20 | 19 | eqeq1d | |
21 | 20 | ex | |
22 | 4 21 | ralrimi | |
23 | rabbi | |
|
24 | 22 23 | sylib | |
25 | nfcv | |
|
26 | nfcv | |
|
27 | nfv | |
|
28 | nffvmpt1 | |
|
29 | 28 | nfeq1 | |
30 | fveqeq2 | |
|
31 | 25 26 27 29 30 | cbvrabw | |
32 | 24 31 | eqtrdi | |
33 | df-rab | |
|
34 | 32 33 | eqtrdi | |
35 | elmapi | |
|
36 | ffn | |
|
37 | fnresdm | |
|
38 | 35 36 37 | 3syl | |
39 | 38 | eqeq2d | |
40 | equcom | |
|
41 | 39 40 | bitrdi | |
42 | 41 | anbi1d | |
43 | 42 | rexbiia | |
44 | fveqeq2 | |
|
45 | 44 | ceqsrexbv | |
46 | 43 45 | bitr2i | |
47 | 46 | abbii | |
48 | 34 47 | eqtrdi | |
49 | simpl | |
|
50 | nn0z | |
|
51 | uzid | |
|
52 | 50 51 | syl | |
53 | 52 | adantr | |
54 | simpr | |
|
55 | eldioph | |
|
56 | 49 53 54 55 | syl3anc | |
57 | 48 56 | eqeltrd | |