Metamath Proof Explorer


Theorem esumcocn

Description: Lemma for esummulc2 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017)

Ref Expression
Hypotheses esumcocn.j J=ordTop𝑡0+∞
esumcocn.a φAV
esumcocn.b φkAB0+∞
esumcocn.1 φCJCnJ
esumcocn.0 φC0=0
esumcocn.f φx0+∞y0+∞Cx+𝑒y=Cx+𝑒Cy
Assertion esumcocn φC*kAB=*kACB

Proof

Step Hyp Ref Expression
1 esumcocn.j J=ordTop𝑡0+∞
2 esumcocn.a φAV
3 esumcocn.b φkAB0+∞
4 esumcocn.1 φCJCnJ
5 esumcocn.0 φC0=0
6 esumcocn.f φx0+∞y0+∞Cx+𝑒y=Cx+𝑒Cy
7 nfv kφ
8 nfcv _kA
9 xrge0tps 𝑠*𝑠0+∞TopSp
10 xrge0base 0+∞=Base𝑠*𝑠0+∞
11 xrge0topn TopOpen𝑠*𝑠0+∞=ordTop𝑡0+∞
12 1 11 eqtr4i J=TopOpen𝑠*𝑠0+∞
13 10 12 tpsuni 𝑠*𝑠0+∞TopSp0+∞=J
14 9 13 ax-mp 0+∞=J
15 14 14 cnf CJCnJC:0+∞0+∞
16 4 15 syl φC:0+∞0+∞
17 16 adantr φkAC:0+∞0+∞
18 17 3 ffvelcdmd φkACB0+∞
19 xrge0cmn 𝑠*𝑠0+∞CMnd
20 19 a1i φ𝑠*𝑠0+∞CMnd
21 9 a1i φ𝑠*𝑠0+∞TopSp
22 cmnmnd 𝑠*𝑠0+∞CMnd𝑠*𝑠0+∞Mnd
23 19 22 ax-mp 𝑠*𝑠0+∞Mnd
24 23 a1i φ𝑠*𝑠0+∞Mnd
25 6 3expib φx0+∞y0+∞Cx+𝑒y=Cx+𝑒Cy
26 25 ralrimivv φx0+∞y0+∞Cx+𝑒y=Cx+𝑒Cy
27 xrge0plusg +𝑒=+𝑠*𝑠0+∞
28 xrge00 0=0𝑠*𝑠0+∞
29 10 10 27 27 28 28 ismhm C𝑠*𝑠0+∞MndHom𝑠*𝑠0+∞𝑠*𝑠0+∞Mnd𝑠*𝑠0+∞MndC:0+∞0+∞x0+∞y0+∞Cx+𝑒y=Cx+𝑒CyC0=0
30 29 biimpri 𝑠*𝑠0+∞Mnd𝑠*𝑠0+∞MndC:0+∞0+∞x0+∞y0+∞Cx+𝑒y=Cx+𝑒CyC0=0C𝑠*𝑠0+∞MndHom𝑠*𝑠0+∞
31 24 24 16 26 5 30 syl23anc φC𝑠*𝑠0+∞MndHom𝑠*𝑠0+∞
32 eqidd φkAB=kAB
33 32 3 fmpt3d φkAB:A0+∞
34 7 8 2 3 esumel φ*kAB𝑠*𝑠0+∞tsumskAB
35 10 12 12 20 21 20 21 31 4 2 33 34 tsmsmhm φC*kAB𝑠*𝑠0+∞tsumsCkAB
36 16 3 cofmpt φCkAB=kACB
37 36 oveq2d φ𝑠*𝑠0+∞tsumsCkAB=𝑠*𝑠0+∞tsumskACB
38 35 37 eleqtrd φC*kAB𝑠*𝑠0+∞tsumskACB
39 7 8 2 18 38 esumid φ*kACB=C*kAB
40 39 eqcomd φC*kAB=*kACB