Description: Lemma for esummulc2 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumcocn.j | |
|
esumcocn.a | |
||
esumcocn.b | |
||
esumcocn.1 | |
||
esumcocn.0 | |
||
esumcocn.f | |
||
Assertion | esumcocn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumcocn.j | |
|
2 | esumcocn.a | |
|
3 | esumcocn.b | |
|
4 | esumcocn.1 | |
|
5 | esumcocn.0 | |
|
6 | esumcocn.f | |
|
7 | nfv | |
|
8 | nfcv | |
|
9 | xrge0tps | |
|
10 | xrge0base | |
|
11 | xrge0topn | |
|
12 | 1 11 | eqtr4i | |
13 | 10 12 | tpsuni | |
14 | 9 13 | ax-mp | |
15 | 14 14 | cnf | |
16 | 4 15 | syl | |
17 | 16 | adantr | |
18 | 17 3 | ffvelcdmd | |
19 | xrge0cmn | |
|
20 | 19 | a1i | |
21 | 9 | a1i | |
22 | cmnmnd | |
|
23 | 19 22 | ax-mp | |
24 | 23 | a1i | |
25 | 6 | 3expib | |
26 | 25 | ralrimivv | |
27 | xrge0plusg | |
|
28 | xrge00 | |
|
29 | 10 10 27 27 28 28 | ismhm | |
30 | 29 | biimpri | |
31 | 24 24 16 26 5 30 | syl23anc | |
32 | eqidd | |
|
33 | 32 3 | fmpt3d | |
34 | 7 8 2 3 | esumel | |
35 | 10 12 12 20 21 20 21 31 4 2 33 34 | tsmsmhm | |
36 | 16 3 | cofmpt | |
37 | 36 | oveq2d | |
38 | 35 37 | eleqtrd | |
39 | 7 8 2 18 38 | esumid | |
40 | 39 | eqcomd | |