Metamath Proof Explorer


Theorem esummulc1

Description: An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017)

Ref Expression
Hypotheses esummulc2.a φAV
esummulc2.b φkAB0+∞
esummulc2.c φC0+∞
Assertion esummulc1 φ*kAB𝑒C=*kAB𝑒C

Proof

Step Hyp Ref Expression
1 esummulc2.a φAV
2 esummulc2.b φkAB0+∞
3 esummulc2.c φC0+∞
4 eqid ordTop𝑡0+∞=ordTop𝑡0+∞
5 eqid z0+∞z𝑒C=z0+∞z𝑒C
6 4 5 3 xrge0mulc1cn φz0+∞z𝑒CordTop𝑡0+∞CnordTop𝑡0+∞
7 eqidd φz0+∞z𝑒C=z0+∞z𝑒C
8 oveq1 z=0z𝑒C=0𝑒C
9 icossxr 0+∞*
10 9 3 sselid φC*
11 xmul02 C*0𝑒C=0
12 10 11 syl φ0𝑒C=0
13 8 12 sylan9eqr φz=0z𝑒C=0
14 0e0iccpnf 00+∞
15 14 a1i φ00+∞
16 7 13 15 15 fvmptd φz0+∞z𝑒C0=0
17 simp2 φx0+∞y0+∞x0+∞
18 simp3 φx0+∞y0+∞y0+∞
19 icossicc 0+∞0+∞
20 3 3ad2ant1 φx0+∞y0+∞C0+∞
21 19 20 sselid φx0+∞y0+∞C0+∞
22 xrge0adddir x0+∞y0+∞C0+∞x+𝑒y𝑒C=x𝑒C+𝑒y𝑒C
23 17 18 21 22 syl3anc φx0+∞y0+∞x+𝑒y𝑒C=x𝑒C+𝑒y𝑒C
24 eqidd φx0+∞y0+∞z0+∞z𝑒C=z0+∞z𝑒C
25 simpr φx0+∞y0+∞z=x+𝑒yz=x+𝑒y
26 25 oveq1d φx0+∞y0+∞z=x+𝑒yz𝑒C=x+𝑒y𝑒C
27 ge0xaddcl x0+∞y0+∞x+𝑒y0+∞
28 27 3adant1 φx0+∞y0+∞x+𝑒y0+∞
29 ovexd φx0+∞y0+∞x+𝑒y𝑒CV
30 24 26 28 29 fvmptd φx0+∞y0+∞z0+∞z𝑒Cx+𝑒y=x+𝑒y𝑒C
31 simpr φx0+∞y0+∞z=xz=x
32 31 oveq1d φx0+∞y0+∞z=xz𝑒C=x𝑒C
33 ovexd φx0+∞y0+∞x𝑒CV
34 24 32 17 33 fvmptd φx0+∞y0+∞z0+∞z𝑒Cx=x𝑒C
35 simpr φx0+∞y0+∞z=yz=y
36 35 oveq1d φx0+∞y0+∞z=yz𝑒C=y𝑒C
37 ovexd φx0+∞y0+∞y𝑒CV
38 24 36 18 37 fvmptd φx0+∞y0+∞z0+∞z𝑒Cy=y𝑒C
39 34 38 oveq12d φx0+∞y0+∞z0+∞z𝑒Cx+𝑒z0+∞z𝑒Cy=x𝑒C+𝑒y𝑒C
40 23 30 39 3eqtr4d φx0+∞y0+∞z0+∞z𝑒Cx+𝑒y=z0+∞z𝑒Cx+𝑒z0+∞z𝑒Cy
41 4 1 2 6 16 40 esumcocn φz0+∞z𝑒C*kAB=*kAz0+∞z𝑒CB
42 simpr φz=*kABz=*kAB
43 42 oveq1d φz=*kABz𝑒C=*kAB𝑒C
44 2 ralrimiva φkAB0+∞
45 nfcv _kA
46 45 esumcl AVkAB0+∞*kAB0+∞
47 1 44 46 syl2anc φ*kAB0+∞
48 ovexd φ*kAB𝑒CV
49 7 43 47 48 fvmptd φz0+∞z𝑒C*kAB=*kAB𝑒C
50 eqidd φkAz0+∞z𝑒C=z0+∞z𝑒C
51 simpr φkAz=Bz=B
52 51 oveq1d φkAz=Bz𝑒C=B𝑒C
53 ovexd φkAB𝑒CV
54 50 52 2 53 fvmptd φkAz0+∞z𝑒CB=B𝑒C
55 54 esumeq2dv φ*kAz0+∞z𝑒CB=*kAB𝑒C
56 41 49 55 3eqtr3d φ*kAB𝑒C=*kAB𝑒C