| Step | Hyp | Ref | Expression | 
						
							| 1 |  | esummulc2.a |  | 
						
							| 2 |  | esummulc2.b |  | 
						
							| 3 |  | esummulc2.c |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 4 5 3 | xrge0mulc1cn |  | 
						
							| 7 |  | eqidd |  | 
						
							| 8 |  | oveq1 |  | 
						
							| 9 |  | icossxr |  | 
						
							| 10 | 9 3 | sselid |  | 
						
							| 11 |  | xmul02 |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 | 8 12 | sylan9eqr |  | 
						
							| 14 |  | 0e0iccpnf |  | 
						
							| 15 | 14 | a1i |  | 
						
							| 16 | 7 13 15 15 | fvmptd |  | 
						
							| 17 |  | simp2 |  | 
						
							| 18 |  | simp3 |  | 
						
							| 19 |  | icossicc |  | 
						
							| 20 | 3 | 3ad2ant1 |  | 
						
							| 21 | 19 20 | sselid |  | 
						
							| 22 |  | xrge0adddir |  | 
						
							| 23 | 17 18 21 22 | syl3anc |  | 
						
							| 24 |  | eqidd |  | 
						
							| 25 |  | simpr |  | 
						
							| 26 | 25 | oveq1d |  | 
						
							| 27 |  | ge0xaddcl |  | 
						
							| 28 | 27 | 3adant1 |  | 
						
							| 29 |  | ovexd |  | 
						
							| 30 | 24 26 28 29 | fvmptd |  | 
						
							| 31 |  | simpr |  | 
						
							| 32 | 31 | oveq1d |  | 
						
							| 33 |  | ovexd |  | 
						
							| 34 | 24 32 17 33 | fvmptd |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 | 35 | oveq1d |  | 
						
							| 37 |  | ovexd |  | 
						
							| 38 | 24 36 18 37 | fvmptd |  | 
						
							| 39 | 34 38 | oveq12d |  | 
						
							| 40 | 23 30 39 | 3eqtr4d |  | 
						
							| 41 | 4 1 2 6 16 40 | esumcocn |  | 
						
							| 42 |  | simpr |  | 
						
							| 43 | 42 | oveq1d |  | 
						
							| 44 | 2 | ralrimiva |  | 
						
							| 45 |  | nfcv |  | 
						
							| 46 | 45 | esumcl |  | 
						
							| 47 | 1 44 46 | syl2anc |  | 
						
							| 48 |  | ovexd |  | 
						
							| 49 | 7 43 47 48 | fvmptd |  | 
						
							| 50 |  | eqidd |  | 
						
							| 51 |  | simpr |  | 
						
							| 52 | 51 | oveq1d |  | 
						
							| 53 |  | ovexd |  | 
						
							| 54 | 50 52 2 53 | fvmptd |  | 
						
							| 55 | 54 | esumeq2dv |  | 
						
							| 56 | 41 49 55 | 3eqtr3d |  |