Description: An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esummulc2.a | |
|
esummulc2.b | |
||
esummulc2.c | |
||
Assertion | esummulc1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esummulc2.a | |
|
2 | esummulc2.b | |
|
3 | esummulc2.c | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 3 | xrge0mulc1cn | |
7 | eqidd | |
|
8 | oveq1 | |
|
9 | icossxr | |
|
10 | 9 3 | sselid | |
11 | xmul02 | |
|
12 | 10 11 | syl | |
13 | 8 12 | sylan9eqr | |
14 | 0e0iccpnf | |
|
15 | 14 | a1i | |
16 | 7 13 15 15 | fvmptd | |
17 | simp2 | |
|
18 | simp3 | |
|
19 | icossicc | |
|
20 | 3 | 3ad2ant1 | |
21 | 19 20 | sselid | |
22 | xrge0adddir | |
|
23 | 17 18 21 22 | syl3anc | |
24 | eqidd | |
|
25 | simpr | |
|
26 | 25 | oveq1d | |
27 | ge0xaddcl | |
|
28 | 27 | 3adant1 | |
29 | ovexd | |
|
30 | 24 26 28 29 | fvmptd | |
31 | simpr | |
|
32 | 31 | oveq1d | |
33 | ovexd | |
|
34 | 24 32 17 33 | fvmptd | |
35 | simpr | |
|
36 | 35 | oveq1d | |
37 | ovexd | |
|
38 | 24 36 18 37 | fvmptd | |
39 | 34 38 | oveq12d | |
40 | 23 30 39 | 3eqtr4d | |
41 | 4 1 2 6 16 40 | esumcocn | |
42 | simpr | |
|
43 | 42 | oveq1d | |
44 | 2 | ralrimiva | |
45 | nfcv | |
|
46 | 45 | esumcl | |
47 | 1 44 46 | syl2anc | |
48 | ovexd | |
|
49 | 7 43 47 48 | fvmptd | |
50 | eqidd | |
|
51 | simpr | |
|
52 | 51 | oveq1d | |
53 | ovexd | |
|
54 | 50 52 2 53 | fvmptd | |
55 | 54 | esumeq2dv | |
56 | 41 49 55 | 3eqtr3d | |