Metamath Proof Explorer


Theorem esumval

Description: Develop the value of the extended sum. (Contributed by Thierry Arnoux, 4-Jan-2017)

Ref Expression
Hypotheses esumval.p kφ
esumval.0 _kA
esumval.1 φAV
esumval.2 φkAB0+∞
esumval.3 φx𝒫AFin𝑠*𝑠0+∞kxB=C
Assertion esumval φ*kAB=supranx𝒫AFinC*<

Proof

Step Hyp Ref Expression
1 esumval.p kφ
2 esumval.0 _kA
3 esumval.1 φAV
4 esumval.2 φkAB0+∞
5 esumval.3 φx𝒫AFin𝑠*𝑠0+∞kxB=C
6 df-esum *kAB=𝑠*𝑠0+∞tsumskAB
7 eqid 𝑠*𝑠0+∞=𝑠*𝑠0+∞
8 nfcv _k0+∞
9 eqid kAB=kAB
10 1 2 8 4 9 fmptdF φkAB:A0+∞
11 inss1 𝒫AFin𝒫A
12 11 sseli x𝒫AFinx𝒫A
13 12 elpwid x𝒫AFinxA
14 13 adantl φx𝒫AFinxA
15 nfcv _kx
16 2 15 resmptf xAkABx=kxB
17 14 16 syl φx𝒫AFinkABx=kxB
18 17 oveq2d φx𝒫AFin𝑠*𝑠0+∞kABx=𝑠*𝑠0+∞kxB
19 18 5 eqtr2d φx𝒫AFinC=𝑠*𝑠0+∞kABx
20 19 mpteq2dva φx𝒫AFinC=x𝒫AFin𝑠*𝑠0+∞kABx
21 20 rneqd φranx𝒫AFinC=ranx𝒫AFin𝑠*𝑠0+∞kABx
22 21 supeq1d φsupranx𝒫AFinC*<=supranx𝒫AFin𝑠*𝑠0+∞kABx*<
23 7 3 10 22 xrge0tsmsd φ𝑠*𝑠0+∞tsumskAB=supranx𝒫AFinC*<
24 23 unieqd φ𝑠*𝑠0+∞tsumskAB=supranx𝒫AFinC*<
25 6 24 eqtrid φ*kAB=supranx𝒫AFinC*<
26 xrltso <Or*
27 26 supex supranx𝒫AFinC*<V
28 27 unisn supranx𝒫AFinC*<=supranx𝒫AFinC*<
29 25 28 eqtrdi φ*kAB=supranx𝒫AFinC*<