Description: Develop the value of the extended sum. (Contributed by Thierry Arnoux, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumval.p | |
|
esumval.0 | |
||
esumval.1 | |
||
esumval.2 | |
||
esumval.3 | |
||
Assertion | esumval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumval.p | |
|
2 | esumval.0 | |
|
3 | esumval.1 | |
|
4 | esumval.2 | |
|
5 | esumval.3 | |
|
6 | df-esum | |
|
7 | eqid | |
|
8 | nfcv | |
|
9 | eqid | |
|
10 | 1 2 8 4 9 | fmptdF | |
11 | inss1 | |
|
12 | 11 | sseli | |
13 | 12 | elpwid | |
14 | 13 | adantl | |
15 | nfcv | |
|
16 | 2 15 | resmptf | |
17 | 14 16 | syl | |
18 | 17 | oveq2d | |
19 | 18 5 | eqtr2d | |
20 | 19 | mpteq2dva | |
21 | 20 | rneqd | |
22 | 21 | supeq1d | |
23 | 7 3 10 22 | xrge0tsmsd | |
24 | 23 | unieqd | |
25 | 6 24 | eqtrid | |
26 | xrltso | |
|
27 | 26 | supex | |
28 | 27 | unisn | |
29 | 25 28 | eqtrdi | |